
Digital Object Identifier (DOI) 10.1007/s10107-005-0639-7

Math. Program., Ser. A 106, 391–401 (2006)

Ilan Adler · Richard W. Cottle · Sushil Verma

Sufficient matrices belong to L

We dedicate this article to the memory of George B. Dantzig and Carlton E. Lemke who continue to inspire
researchers everywhere.

Received: February 8, 2005 / Accepted: June 9, 2005
Published online: August 10, 2005 – © Springer-Verlag 2005

Abstract. In this paper, we establish a significant matrix class inclusion that seems to have been overlooked
in the literature of the linear complementarity problem. We show that P∗, the class of sufficient matrices, is a
subclass of L. In the course of demonstrating this inclusion, we introduce other new matrix classes that forge
interesting new connections between known matrix classes.

1. Introduction

Matrix classes have always played a prominent role in the study of the Linear Comple-
mentarity Problem (LCP): Given M ∈ Rn×n and q ∈ Rn×1, find a vector x ∈ Rn

such that

x ≥ 0,

q + Mx ≥ 0,

xT (q + Mx) = 0.

We denote this system by the pair (q, M). Its feasible set (the vectors that satisfy the two
sets of linear inequalities) is denoted FEA (q, M), whereas its solution set (the set of fea-
sible vectors satisfying the third (“complementarity”) condition) is denoted SOL (q, M).
Abundant coverage of matrix classes in the LCP is available in the monographs [6], [24],
and the research articles in the reference list below.

The present study began as an effort to answer a question in the theory of the LCP
that seems not to have been posed before: Is the class P∗ of sufficient matrices included
in the class L? We answer this question in the affirmative. Furthermore, we explore the
connections of L with other matrix classes. In so doing, we establish a bridge between
copositive matrices and certain subclasses of P0.
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As originally defined in the literature [7], the class of “sufficient matrices” mentioned
above was denoted SU. It was conjectured and partially proved in [17] that SU and the
class P∗ defined by Kojima, Megiddo, Noma, and Yoshise [19] are actually the same.
The latter class equals the union of P∗(κ) where κ is a non-negative number. A real n×n

matrix M belongs to P∗(κ) if and only if

(1 + 4κ)
∑

i∈I+(x)

xi(Mx)i +
∑

i∈I−(x)

xi(Mx)i ≥ 0 ∀x ∈ Rn

and

I+(x) = {i : xi(Mx)i > 0} and I−(x) = {i : xi(Mx)i < 0}.
The aforementioned conjecture was established conclusively by Väliaho [25]. Hereafter,
we adopt the notation P∗ for the class of sufficient matrices. We observe that the basic
definition of P∗ does not suggest a finite test for membership in that class. Nevertheless,
by virtue of the equivalence of P∗ and SU, such a test is available. See [5].

It is known that P∗ contains several other classes of interest in the study of the
LCP. Among these are: the positive semidefinite matrices, the matrices whose principal
minors are all positive, the matrices having only one principal minor of value zero and
all the rest positive, and the adequate matrices. Interestingly, all these subclasses of P∗
are known to be subclasses of the class L which was introduced by Eaves in [11] where
many of these inclusions were first proved. They contributed directly to our hunch that
P∗ ⊂ L. It should be noted that L ⊂ Q0, meaning that whenever (q, M) is feasible, it
is solvable. Indeed, Eaves showed that for M ∈ L, Lemke’s algorithm [20] will process
(q, M), that is, find a solution or give evidence that the problem is infeasible.

2. Notation and terminology

In this section we set down a bit of notation and give a few standard definitions to get
things started. Others will be given later, as needed. Our aim, for the moment, is to enable
the reader to understand the material up to this point.

All non-indexed matrices and vectors are in Rn×n and Rn, respectively, but we
write (x1, . . . , xn) instead of [x1 · · · xn]T . If A is a matrix, A.i denotes the ith column
of A. Whenever α ⊆ {1, 2, . . . , n} we denote by ᾱ the complement of α with respect to
{1, 2, . . . , n}.
Definition 2.1. A matrix M ∈ E0 if for every 0 �= x ≥ 0 there exists some i such that
xi > 0 and (Mx)i ≥ 0. Introduced in [11] and [18], the matrices in this class are said
to be semimonotone. See [6, 3.13.18]

Definition 2.2. A matrix M ∈ E1 if for every nonzero x ∈ SOL (0, M) there exists
nonnegative diagonal matrices � and � such that (�M + MT �)x = 0 and �x �= 0.

Definition 2.3. L = E0 ∩ E1.

Definition 2.4. A matrix M ∈ CSU (is Column Sufficient) if for all x

xi(Mx)i ≤ 0 (i = 1, 2, . . . , n) implies that xi(Mx)i = 0 (i = 1, 2, . . . , n).
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Definition 2.5. A matrix M ∈ RSU (is Row Sufficient) if MT ∈ CSU.

Definition 2.6. P∗ = CSU ∩ RSU. The matrices in this class are said to be sufficient.

Remark. It is known [7, p. 238] that RSU (and hence CSU) is a subclass of P0, the
class of matrices with nonnegative principal minors. This fact makes RSU and CSU
subclasses of E0 as we know from [11].

Definition 2.7. Given a vector x, we shall denote by σ(x) the support of x, i.e. {i | xi �=
0}.

For a given matrix M ∈ Rn×n and a given partition α, ᾱ of {1, 2, . . . , n}, CM(α)

denotes the n × n matrix for which

[CM(α)].i =
{−M.i i ∈ α

I.i i ∈ ᾱ
(2.1)

With a slight abuse of language, the matrices CM(α) are called complementary subma-
trices (of [−M I ]). The sets

pos CM(α) = {CM(α)x | x ≥ 0}
are the complementary cones, relative to M . The union over α of these cones is denoted
K(M) and called the complementary range of M . Clearly, SOL (q, M) �= ∅ if and only
if q ∈ K(M).

It is customary to simplify the notation CM(α) to Cα when the matrix M is under-
stood. Further simplification is achieved (and usually not restrictive) when α is a leading
subset of {1, 2, . . . , n}, in which case we have

Cα =
[−Mαα 0

−Mᾱα I

]
. (2.2)

This matrix is singular if and only if the principal submatrix Mαα of M is singular. When
this is the case, the corresponding complementary cone pos Cα is said to be degenerate
and nondegenerate otherwise. A strongly degenerate complementary cone pos Cα is
one for which

{x | CM(α)x = 0, 0 �= x ≥ 0} �= ∅.

Strong degeneracy is intimately connected with a criterion for the boundedness of
the solution set of an LCP, a subject that has been considered in several publications,
such as [2], [6], [8], [9], [10] [15] and [21]. Suppose SOL (q, M) is nonempty. Then
there exist a positive, but finite, number of index sets α such that q ∈ pos CM(α). The
elements of SOL (q, M) come from the solution sets X(α) of the corresponding systems

CM(α)x = q, x ≥ 0.

By a well known theorem of linear inequality theory (see for instance [13]) the set X(α)

is unbounded if and only if (in our terminology) the complementary cone pos Cα is
strongly degenerate.
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The matrix M belongs to Q0 when for all q

FEA (q, M) �= ∅ 
⇒ SOL (q, M) �= ∅.

It was shown by Eaves [11] that M ∈ Q0 if and only if K(M) is convex. This result is
also covered in [6, 3.2.1].

It was mentioned in Section 1, that the class L is a subclass of Q0. In fact, this is also
true of the class RSU as first proved in [7]. It was noted there – and proved in [1] – that
since RSU ⊂ P0 ∩ Q0, Lemke’s algorithm [20] will process any LCP (q, M) with a row
sufficient matrix M . Furthermore, it was shown in [3] that the Principal Pivoting Method
of Cottle and Dantzig also processes this class of linear complementarity problems.

3. Preliminary results

We start by proving a series of lemmas which will be used to show that the class P∗
of sufficient matrices is a subclass of L. Since L = E0 ∩ E1, and it is known [7] that
P∗ ⊂ P0 ⊂ E0, the task boils down to proving P∗ ⊂ E1.

Remark. We establish the following three lemmas for a new matrix class even larger
than RSU (which, in turn, is even larger than P∗). We believe these easily proved results
are of independent interest because they seem to embrace both RSU and C0, the latter
being the class of all copositive matrices, i.e., those for which

x ≥ 0 
⇒ xT Mx ≥ 0.

It will be helpful to define the polyhedral cone

T (M) = {y | y ≥ 0, yT M ≤ 0}.
(This cone appears in Gowda’s paper [14] where copositive star matrices were intro-
duced. See also [6, 3.8.13].) Note that for any square matrix M , we have

SOL (0, −MT ) ⊆ FEA (0, −MT ) = T (M).

Definition 3.1. Let T∗ denote the class of all square matrices M such that

T (M) = SOL (0, −MT ).

Lemma 3.1. RSU ⊂ T∗.

Proof. Let M ∈ RSU. We need only prove T (M) ⊆ SOL (0, −MT ). For all y ∈ T (M),
we have yi(M

T y)i ≤ 0 (i = 1, 2, . . . , n). However, M ∈ RSU, so MT ∈ CSU, which
implies that yi(M

T y)i = 0 (i = 1, 2, . . . , n). Thus we can conclude that T (M) ⊆
SOL (0, −MT ). Hence M ∈ T∗. �
Remark. The class T∗ contains more than just RSU. For example, it contains C0. Indeed,
let M be copositive. Then by the above, SOL (0, −MT ) ⊆ T (M). Now if y ∈ T (M),
then yT My ≤ 0 with y ≥ 0 so that yT My = 0; hence T (M) ⊆ SOL (0, −MT ). In
short, C0 ⊂ T∗ (strictly).
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Lemma 3.2. Suppose M ∈ T∗. If y, z ∈ SOL (0, −MT ), then yi(M
T z)i = 0 (i =

1, 2, . . . , n) and zi(M
T y)i = 0 (i = 1, 2, . . . , n).

Proof. Suppose y, z ∈ SOL (0, −MT ). Since by Definition 3.1, SOL (0, −MT ) is a
convex cone, we have 1

2y + 1
2z ∈ SOL (0, −MT ). Thus,

0 = (
1

2
y + 1

2
z)T (−MT )(

1

2
y + 1

2
z)

= 1

4
(yT (−MT )y + zT (−MT )z − yT MT z − zT MT y)

= −1

4
(yT MT z + zT MT y).

Noticing that y ≥ 0 , z ≥ 0 , MT y ≤ 0 , MT z ≤ 0, completes the proof. �
Lemma 3.3. Suppose M ∈ T∗ and T (M) �= {0}. There exists β, a nonempty subset of
{1, 2, . . . , n}, such that for every y ∈ T (M), (MT y)β = 0 and, when β̄ is nonempty,
yβ̄ = 0.

Proof. Let i ∈ β if, and only if, there exists z ∈ T (M) such that zi > 0; that is to say,

β =
⋃

z∈T (M)\{0}
σ(z).

The index set β is nonempty; moreover, since T (M) is a convex cone, β is, in fact, the
support of some vector ẑ ∈ T (M). Thus, by Lemma 3.2, ify ∈ T (M), then (MT y)β = 0,
and obviously for nonempty β̄ , yβ̄ = 0. �

At this juncture, we verify an assertion which, in essence, was made long ago by
Garcia [12].

Proposition 3.1. If M ∈ Rn×n, then M ∈ E1 if and only if for every z ∈ SOL (0, M) \
{0}, there exists y such that:

y ∈ T (M) \ {0} (3.1)

σ(y) ⊆ σ(z) (3.2)

σ(MT y) ⊆ σ(Mz) (3.3)

Proof. Suppose M ∈ E1. If z ∈ SOL (0, M)\{0} there exist nonnegative diagonal matri-
ces � and � such that �z �= 0 and (�M+MT �)z = 0. Now if SOL (0, M) = {0}, there
is nothing to prove. Let z ∈ SOL (0, M) \ {0}. Define y = �z. Then y is nonnegative
and nonzero. It is then clear that MT y ≤ 0, so that (3.1) holds. Furthermore, if zi = 0,
then yi = 0. Hence (3.2) holds. Next, if (Mz)i = 0, then (MT y)i = 0, so (3.3) holds.

Conversely, if SOL (0, M) = {0}, there is nothing to prove. Hence suppose z ∈
SOL (0, M) \ {0} and that there exists a nonzero vector y such that (3.1)–(3.3) hold. By
(3.2), it is clear that there exists a nonnegative diagonal matrix � such that y = �z. By
(3.3), there exists a nonnegative diagonal matrix � such that �Mz = −MT y. Accord-
ingly, M ∈ E1. �
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Lemma 3.4. For a given M ∈ Rn×n let α, ᾱ be a partition of {1, 2, . . . , n}. Then there
exists a vector y such that

yT M ≤ 0 , 0 �= y ≥ 0

yT
α Mαα = 0

yᾱ = 0

if and only if there is no solution of the system

Cαx = −Mr + s

x ≥ 0 , r ≥ 0 , s > 0.
(3.4)

Proof. It is clear that (3.4) is equivalent to the system

Cαx + Mr − s = 0

s − t = d (where d is an arbitrary positive vector) (3.5)

x ≥ 0 , r ≥ 0 , s ≥ 0 , t ≥ 0.

By Farkas’s lemma (see, e.g., [6, p. 109]), (3.5) has no solution if and only if there
exist y and u such that

yT Cα ≤ 0, yT M ≤ 0, y − u ≥ 0, 0 �= u ≥ 0,

which, by setting y = (yα, yᾱ) and using (2.1), completes the proof. �
Corollary 3.1. For a given M ∈ Rn×n, and a partition α, ᾱ of {1, 2, . . . , n} there
exists y such that

y ∈ T (M) \ {0} (3.6)

σ(y) ⊆ α (3.7)

σ(MT y) ⊆ ᾱ (3.8)

if and only if int pos[−M I ] ∩ pos Cα = ∅.

Proof. The assertion follows directly from Lemma 3.4 and the observation that q ∈
int pos[−M, I ] if and only if there exist r ≥ 0 , s > 0 such that q = −Mr + s. �
Definition 3.2. A matrix M belongs to R1 if SOL (q, M) is bounded for all q ∈ int pos

[−M I ].

Remark. The class R1 contains the class R0. The latter class was introduced in [12]
by Garcia who denoted it by E∗(0).The class R0 is discussed in [6, 3.9.23] where it is
shown that such matrices M are characterized by the boundedness of the solution sets
for all LCPs (q, M), not just those for which q ∈ int pos[−M, I ] as in the case of
R1-matrices.

Taking account of the criterion for unboundedness of the solution set of an LCP
(stated above), we have
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Lemma 3.5. M ∈ R1 if and only if for every α ⊆ {1, 2, . . . , n}
{0 �= x ≥ 0 | Cαx = 0} �= ∅ ⇒ int pos[−M, I ] ∩ pos Cα = ∅. �

We now return to T∗ and give a criterion for such a matrix to belong to the class E1.
This will lead to a criterion for membership in L.

Proposition 3.2. T∗ ∩ R1 ⊂ T∗ ∩ E1.

Proof. Suppose z ∈ SOL (0, M) \ {0} and let σ1 = σ(z) , σ2 = σ(Mz) and σ3 be the
complement of σ1 ∪ σ2 with respect to {1, 2, . . . , n}. Define α = σ1 ∪ {i ∈ σ3 | i ∈ β̄}
and its complement ᾱ = σ2 ∪ {i ∈ σ3 | i ∈ β} where β, β̄ are defined as in Lemma
3.3 and T (M) �= {0}. In the event that T (M) = {0}, we take β = ∅. For simplicity, we
assume that α is the leading index set within {1, 2, . . . , n}. Let x = (zα, (Mz)ᾱ). Then

Cαx = 0 , 0 �= x ≥ 0, where Cα is defined as in (2.2). (3.9)

Suppose M ∈ R1. Then (3.9) and Lemma 3.5 imply that int pos[−M, I ]∩pos Cα = ∅,
so by Corollary 3.1 there exists y satisfying (3.6)–(3.8).

Suppose zi = 0 for some i ∈ α. Then, i ∈ β̄ by the definition of α, so by Lemma
3.3, yi = 0. Noticing that yᾱ = 0, we conclude that σ(y) ⊆ σ(z).

Suppose (Mz)i = 0 for some i ∈ ᾱ. Then i ∈ β by the definition of ᾱ. Thus, by
Lemma 3.3, (MT y)i = 0. Noticing that (MT y)α = 0, we conclude that σ(MT y) ⊆
σ(Mz).

Thus, in view of Proposition 3.1 we have shown that M ∈ E1. �
Using Proposition 3.2, and recalling that L = E0 ∩ E1 and RSU ⊂ E0 ∩ T∗, we

can immediately state the following corollary which sets up a sufficient condition for a
matrix M ∈ RSU to be in L.

Corollary 3.2. Suppose M ∈ RSU. If M ∈ R1, then M ∈ L.

4. The main results

We are now in a position to establish our main results.

Theorem 4.1. CSU ∩ Q0 ⊂ R1.

Proof. Suppose M is a matrix belonging to CSU ∩ Q0 but not to R1. Then in view of
Lemma 3.5 it must be the case that for some element q̃ ∈ int pos[−M I ], we have
vectors z and zλ = z̄ + λz such that z ∈ SOL (0, M) \ {0} and zλ ∈ SOL (q̃, M) for all
λ ≥ 0. Let

α = σ(z), β = σ(z + z̄) \ α, γ = α ∪ β.

Next choose p ∈ K(M) such that

pi − q̃i < 0 if i ∈ α

pi − q̃i = 0 if i ∈ β

pi − q̃i > 0 if i ∈ γ.
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Such a vector p is guaranteed to exist since q̃ ∈ int pos[−M I ] and M ∈ Q0.

Choose any w ∈ SOL (p, M). The remainder of the argument will show that for
sufficiently large λ the vector zλ − w violates the column sufficiency property of M .
Note that for all such λ, we have (zλ − w)α > 0. Consequently we have

(M(zλ − w))α = −q̃α − (Mw)α ≤ −q̃α + pα < 0.

Thus, we have shown

(zλ − w)α(M(zλ − w))α < 0.

Now let i ∈ β. Then z̄i > 0 and zi = 0. For such i we also have pi = q̃i . For all
these i we have

(zλ − w)i(M(zλ − w))i = (zλ − w)i((Mzλ)i − (Mw)i + q̃i − pi)

= zλ
i ((Mzλ)i + q̃i ) − wi((Mzλ)i + q̃i )

+zλ
i (−(Mw)i − pi) − wi(−(Mw)i − pi)

≤ 0.

Finally, let i ∈ γ . In this case, we must have zi = z̄i = zλ
i = 0. From this we obtain

(zλ − w)i(M(zλ − w))i = −wi((Mzλ)i − (Mw)i)

≤ −wi((Mzλ)i − (Mw)i + q̃i − pi)

= −wi(Mzλ + q̃)i + wi(Mw + p)i

= −wi(Mzλ + q̃)i

≤ 0.

Thus, we have shown that for sufficiently large λ

(zλ − w)i(M(zλ − w))i ≤ 0 for all i = 1, . . . , n;
but since α �= ∅, it is not the case that for sufficiently large λ

(zλ − w)i(M(zλ − w))i = 0 for all i = 1, . . . , n.

Since M is column sufficient, this is a contradiction. Hence M ∈ R1. �
This brings us to the first of the main results we set out to prove.

Corollary 4.1. Every sufficient matrix belongs to the class L.

Proof. Suppose that M ∈ P∗. Recall that P∗ = CSU ∩ RSU ⊂ RSU ⊂ Q0. Accord-
ingly, P∗ ⊂ CSU ∩ Q0, so by Theorem 4.1, M ∈ R1. Thus, in view of Corollary 3.2, we
can conclude that M ∈ L. �

The reverse of Proposition 3.2—without the restriction that M ∈ T∗—follows from
a result of Gowda and Sznajder [16, Theorem 11]. Here we prove it afresh and thereby
avoid developing their conceptual apparatus.
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Proposition 4.1. E1 ⊂ R1.

Proof. Suppose M ∈ E1 and let α, ᾱ be a partition of {1, 2, . . . , n} where for simplicity,
α is written as a leading index set within {1, 2, . . . , n}. Suppose there exists x such that

Cαx = 0, 0 �= x ≥ 0, where Cα is defined as in (2.2).

Let z≡(zα, zᾱ)=(xα, 0), so Mz=((Mz)α, (Mz)ᾱ)=(0, xᾱ) and z ∈ SOL (0, M)

\ {0} with σ(z) ⊆ α and σ(Mz) ⊆ ᾱ. By Proposition 3.1 there exists y satisfying (3.1)–
(3.3). Obviously y satisfies (3.6)–(3.8) as well, so by Corollary 3.1, int pos[−M I ] ∩
pos Cα = ∅, which, in view of Lemma 3.5, implies that M ∈ R1. �

Combining Propositions 3.2 and 4.1, and recalling that L = E0 ∩ E1, we get a
complete characterization of the class L within E0 ∩ T∗.

Corollary 4.2. If Y is a subclass of E0 ∩ T∗ then

Y ∩ R1 = Y ∩ L. �
The significance of this corollary for the classes RSU and C0 is obvious.
Interestingly, the characterization above can be alternatively expressed in terms of a

known (see, for example, [2] and [6, 6.3.14]) class of matrices which is defined below.1

Definition 4.1. A matrix M belongs to R2 if SOL (q, M) is bounded for all q ∈ int

K(M).

It is clear that R1 ⊂ R2, but more can be said.

Proposition 4.2. Suppose M ∈ E0 ∩ T∗. Then M ∈ R1 if and only if M ∈ R2 ∩ Q0.

Proof. Suppose M ∈ R2 ∩ Q0. Recall that M ∈ Q0 means that K(M) = pos[−M I ],
which, by definition, implies that M ∈ R1.

Suppose M ∈ R1. From the assumption M ∈ E0 ∩ T∗ and Proposition 3.3, we see
that M ∈ E0 ∩ E1 = L ⊂ Q0. Thus, since R1 ⊂ R2, we conclude that M ∈ R2 ∩ Q0. �

This, in light of Corollary 4.2, leads to a characterization of the class L within E0∩T∗
in terms of class R2.

Corollary 4.3. If Y is a subclass of E0 ∩ T∗, then

Y ∩ R2 ∩ Q0 = Y ∩ L. �
Remark. At this time, it is an open question as to whether there exist row sufficient
matrices that do not belong to L. Such an example would be needed to demonstrate that
restricting RSU to be in R1 (or, equivalently, in R2 ∩Q0) is required to make it a subclass
of L. On the other hand, an example such as

M =
[

1 0
−1 0

]

1 The notation R2 for this class of matrices appears for the first time in this paper.
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shows that P0 ∩ Q0 is not a subclass of L. Furthermore, Murthy, Parthasarathy, and
Ravindran [23] show that the matrix

M =





0 0 1 1
0 0 1 1
1 −1 1 0

−1 1 0 1





belongs to C0 ∩ Q but not to R0. It is elementary to show that it does not belong to E1
(and therefore to L) either.
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