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Fundamental Transformations
of Sudoku Grids

AVIV ADLER and ILAN ADLER

The Sudoku puzzle can be described as follows. Given a 9 x 9 grid with nine distinct 3 x 3
subgrids, we say that an assignment of the numerals 1,2, ...,9 to the 81 cells of the grid is
called a valid pattern if every row, column, and subgrid contains all nine numerals (see figure 1
tor an example of a valid pattern).

Inreference | Felgenhauer and Jarvis enumerated the number of valid patterns. Ina follow-up
article (reference 2), Russell and Jarvis restricted the enumeration to what they called essentially
different patterns. For that purpose they introduced alist of several transformations of the cells of
the grid such as reflections, rotations, and a few others that transform any valid pattern; they con-
sidered two patterns to be essentially the same if one can be obtained from the other by asequence
of these transformations. A natural question that can be asked is whether there exist other
transformations besides those introduced in reference 2 that should be considered as leaving
two patterns essentially the same. In this article we show that any conceivable transformation
that leaves a valid pattern essentially the same can be constructed as a finite sequence of
the transformations listed in reference 2, thus validating the completeness of the enumeration
performed in reference 2 as the precise number of essentially different valid Sudoku patterns.

We denote a given grid by A, where A;; denotes the cell inrow i and column j (see figure 2).
A particular valid pattern can then be presented by assigning the appropriate numerals to the
cells. So, for example, the valid pattern in figure 1 is A;; =5, A3 = 2, and so on.

Note that permuting the numerals (e.g. exchanging | and 2) in a valid pattern leaves it
essentially the same. In order to eliminate the dependence on particular numeral choices, we
say that a partition Sy, Sy, ..., So of the 81 cells in a grid is valid if, for i = 1,2,...,9,

1. each §; contains nine of the cells in the grid,

2. every row, column, and subgrid of A contains one, and only one, element of ;.
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So, in figures 1 and 2, the partition of the grid corresponding to the given pattern is

Sy = {A11, A2, Az, Ade, Asa, Agg, A77, Ags, Ags}  (the component corresponding to 5),
Sy = {As1, A2, A3, Asa, Ass, Ags, Ag7, A1, Ago)} (the component corresponding to 4),

and so on. (It should be noted that throughout this article the ordering of elements within a set
is arbitrary. For example, {x, y, z} is the same as Iy, x,2}.)

Given a grid A, let ® be a permutation of the cells in A. Thus, @ is a one-to-one
transformation of the cells of A to another 9 x 9 grid, ®(A). That is, each of the cells
Ajjin Ais transformed into a cell in ®(A) such that no two cells in A are transformed into
the same cell in ®(A). Figure 3 depicts two examples of such permutations.

Given a subset S of cells in A, we say that ®(S) is the image of the cells in S under
the transformation ®. We call ® a fundamental transformation if, for every valid partition
S1,82,..., 89 of A, ®(S1), P($2),-.., & (Sg) is a valid partition of ®(A). Note that both
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Figure 4 (a) @ appiied to the Sudoku in figure 1, (b) ®, applied to the Sudoku in figure 1.
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transformations in figure 3 when applied to the particular pattern in figure 1 result in valid
partitions (see figure 4). However, as we will later demonstrate, while @, is a fundamental
transformation, @, is not.

Following the terminology in reference 2, we say that a block refers to one of the 3 x 3
subgrids within the 9 x 9 grid, a stack consists of three blocks in a vertical 9 x 3 subgrid, and
a band consists of three blocks in a horizontal 3 x 9 subgrid (see figure 5).

As discussed in reference 1, there are several well-known simple fundamental transtorma-
tions that we shall call elementary here. Below is the list of the elementary transformations to
be considered in this article. (A sixth transformation mentioned in reference 2, rotation, can be
obtained by using reflection followed by permutations of stacks and columns.)

1. Permute the three stacks.

2. Permute the three bands.




3. Permute the three columns within a stack.
4. Permute the three rows within a band.
5. Reflection with respect to the main NW-to-SE diagonal (similar to transposing a matrix).

Clearly, any transformation constructed by applying sequentially a series of fundamental
transformations is fundamental. We denote the transformation resulting from applying any
transformation & followed by another transformation (®, say) as ®& and the inverse trans-
formation of ® by ®~! (thatis, ®~'d(A) = A). Our main result is that any fundamental
transformation can be constructed by applying a finite sequence of elementary transformations.
Specifically, we prove the tfollowing theorem.

Theorem 1 Let & be a fundamental transformation. Then, there exists a sequence of elemen-
tary transformations ®1, ®y, ..., ®,, such that & = &, d,,_; -+ D;.

Given a fundamental transformation ® and a grid A, let B = ®(A). We will show that it
1s always possible to identify a sequence of elementary transformations Wy, ¥,, ..., ¥,, such
that W,,W,n_1--- W, (B) = A. Since, as can be easily verified, for any of the five elementary
transformations there exists an inverse elementary transformation of the same kind, by applying
\Ill‘l W;l -+~ W1 on both sides of the preceding equation we get B = tI»'l_l\Ilz—l WA,
which will prove theorem 1. We shall first prove several preliminary results.

Two cells in a grid A are said to be dependent within A if they share a row, a column, or a
block within A. Conversely, two cells ina grid A are said to be independent within A if they do
not share a row, a column, or a block within A. Note that all the cells in any of the components
of a valid partition are mutually independent. Thus, given a grid A and a nonfundamental
transformation @, it means that there exist two independent cells (s and ¢, say) in A such
that ®(s) and ®(¢) are dependent within ®(A). Next we prove the converse of the preceding
Statement.

Lemma1 Givenagrid A and a transformation ®, suppose that there exist two independent
cells (s and t, say) in A for which ®(s) and ®(t) are dependent within ®(A). Then ® is
nonfundamental.

Lemma 1 follows directly from the following result.

Lemma2 If two cells are independent within A, then there exists a valid partition of A such
that these two cells belong to the same component of the partition.

We can prove lemma 2 by showing that for every valid pattern with two different numerals
(‘xand “y’, say) in any two independent cells, we can obtain another valid pattern with numeral
‘X" in both cells. Consider the grid in figure 1. Suppose that we want to construct another valid
pattern in which the two independent cells A; and Asg both are assigned the numeral 5. (In
the example, Ay} = 5 and Asq = 2.) The idea is to exchange the content of cell Ass with that
of the cell in its block that contains 5 (A4 in the grid of figure 1). Now simply switch rows 4
and 5 and then switch columns 4 and 6, placing S in As4 as desired. The point is that the new
pattern is valid since we used only elementary transformations. Thus, we obtain the following
theorem.

Theorem 2 Given a grid A, a transformation ® is fundamental if and only if. for every pair
s, t of independent cells within A, the pair ®(s), ®(t) is independent within ®(A).
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Thus, by theorem 2, &, (as given in figure 3) is not fundamental since Ay, A47 is an
independent pair of cells within A whereas D7(Ap1), O2(Ay7) is a dependent pair of cells
within ®;(A) (since both cells appear in the fifth row of @, (A)). Next, we prove a key property
of fundamental transformations.

Lemma 3 Ler A be a given grid and ® a fundamental transformation.
(a) Either (i) or (ii) holds.

(1) Forevery row R (that is, the set of all the cells in the row) in A, ®(R) is a row in
D (A); for every column C in A, ® (C) is acolumn in ®(A).

(1) For every row R in A, ®(R) is a column in ®(A); for every column C in A,
P (C) isarowin ®(A).

(b) If B isablockin A, then ®(B) is a block in d(A).

Proof A key observation in the proof is that a set of nine mutually dependent cells in a grid is
necessarily a-row, a column, or a block. Now, since the number of pairs of independent cells in
agrid A is fixed, we have, by theorem 2, that a transformation @ is fundamental if and only if
every dependent pair of cells is transformed to a dependent pair of cells. Consequently, if S is
a set of nine mutually dependent cells in a grid A and & is a fundamental transformation, then
®(S) is necessarily a row, a column, or a block in ®(A). Thus, givenarow R and a column C
in A and since & is a fundamental transformation, we have that each of ®(R) and ®(C) is a
row, column, or block in ®(A). However, the union of R and C contains 17 cells so the union
of ®(R) and ®(C) also contains 17 cells. But the union of a block and a row (or a column)
contains either 15 or 18 cells while the union of two distinct rows (or two distinct columns, or
two distinct blocks) contains 18 cells. This proves part (a) of the lemma. Moreover, there are
27 distinct sets of nine mutually dependent sets in A (as well as in ®(A)), namely the rows,
columns, and blocks, which given (a) proves (b).

An immediate consequence of lemma 3 is the following corollary.

Corollary 1 Given a stack S and aband N in a grid A and ® a fundamental transformation,
the following holds.

(1) Iflemma 3(a)(i) holds, then D(S) is a stack in P(A) and ®(N) is a band in d(A).
(1) If lemma 3(a)(ii) holds, then @ (S) is a band in ®(A) and (N) is a stack in P(A).

Finally, we are ready to prove theorem 1. As was stated carlier, we shall prove theorem 1 by
showing that we can transform B = ®(A) to A by a sequence of elementary transformations.
We shall proceed by introducing several steps where each step is designed to transform a
particular subgrid of B.

Proof of theorem 1 We split the proof into three steps.
L. According to lemma 3, all the rows in B are transformations of either rows or columns

of A. If it is the latter, reflect the entries of B along the main NW-to-SE diagonal to
obtain Bj.




2. Given (as established in step 1) that every row in A is arow in By, every column in A
is a columnin By, and by corollary 1, we get that for any band N in A, ®(N) is a band
in B, and for any stack S in A, ®(S) is a stack in B;. Now, permute the bands and
stacks in By to correspond to the bands and stacks in A to give B;.

3. Finally within each band (or stack) of B,, permute the rows (or columns) to correspond
to those in A to give Bs3.

Step 3 completes the proof, as now B3 = A.

We conclude the article with two remarks.

Remark 1 In a recent paper (reference 3), Herzberg and Murty discussed the question re-
garding the number of valid patterns in any n -Sudoku, where the grid has n? x n? cells with
n? (n x n) blocks and the task is to fill up the grid with numerals 1, 2, ..., n such that each
numeral appears once and only once in each row, column, and block. In particular, they listed
the elementary transformations as those leading to what they call equivalent Sudoku patterns.
It can_be easily confirmed that all the results presented here can be extended directly to any
n-Sudoku, thus establishing that the definition of equivalency in reference 3 is justified as it
covers all the transformations that preserve valid patterns.

Remark 2 Note that as a corollary to theorem 1, it is possible to generate all the fundamentally
valid patterns from an arbitrary valid pattern by apply the six available permutations to each
of the eight elementary transformations involving permutations and the two possibilities for
the reflection, leading to 63 x 2 valid patterns (6% x 2 x 9! = 1218998 108 160 if valid
patterns with the numerals permuted are considered). However, this number may exceed the
actual number of essentially different valid patterns since it is conceivable that two distinct
fundamental transformations, ®;(A) and ®,(A), transform a valid partition A to the same
partition (that is, ®1(A) = ®,(A)). Itis interesting to note that the number above is extremely
close (within 0.005%) to 1218935 174 261, the actual number of valid patterns as computed
in reference 2.
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