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We extend the list of linear programming problems that are known to be solvable in strongly polynomial time to include 
a class of LPs which contains special cases of the generalized transshipment problem. The result is facilitated by exploiting 
some special properties associated with Leontief substitution systems and observing that a feasible solution to the system, 
Ax = b, x > 0, in which no variable appears in more than two equations, can be found in strongly polynomial time for 
b belonging to some set Q. 

Consider the pair of linear programming problems 
I ~~ 

(LPs): 

Problem P 

Minimize c TX 

subject to Ax = b 

x 0. 

Problem D 

Maximize b Ty 

subject to A Ty < c 

where c E R", b E Rm and A E RmXn has full row 
rank, so m < n. 

When some problem parameter, aij, bi or cj, is a 
rational number, say p/q, we say that it has a "length," 
which is equal to the number of digits in its binary 
encoding, rlog2(I p I+ 1)1 + rlog2( I q I + 1)1. (Irra- 
tional numbers are assumed to have infinite length.) 

The sum of the lengths of the parameters represent- 
ing an instance of P or D is usually denoted by L. 

An algorithm that solves a class of LPs is said to 
run in polynomial time, if the total number of ele- 
mentary arithmetic operations performed can be 
bounded by a polynomial function of n, m, and L. 
Elementary operations are limited to addition, sub- 
traction, multiplication, division and comparison, and 
operate on rational numbers whose size is bounded 
by a polynomial in L. Accordingly, numbers generated 
by the algorithm must be bounded by a polynomial 

in L. An algorithm is said to run in strongly polynom- 
ial time if the number of elementary operations can 
be bounded by a function that is polynomial in n and 
m, and is independent of L. 

At present, there is no algorithm that can solve a 
general instance of the linear programming problem 
in strongly polynomial time. However, by using any 
of the polynomial algorithms for the problem (e.g., 
the method of Khachiyan 1979 or Karmarkar 1984, 
or their variants) as a subroutine, Tardos (1986) pro- 
vided an algorithm for linear programming whose 
running time bound is a polynomial function of m, n 
and the length of the elements in A, and is independent 
of the length of the elements in b and c. Consequently, 
the class of LPs having a constraint matrix with ele- 
ments whose length is boundable by a polynomial in 
n and m, can be solved in strongly polynomial time. 

In order to find additional classes of the LP problem 
that are solvable in strongly polynomial time, we have 
to identify conditions for A, b or c, which define LP 
classes with properties that lend themselves to efficient 
solution techniques. For LPs with an aij very large in 
length, we expect to find encouraging results when A 
has a peculiar distribution of nonzero elements or 
element signs. For such systems, feasible bases may 
be structured specially, so it would be easier to char- 
acterize and hence find feasible or optimal solutions. 
In the next section, we describe Leontief subsitutions 
systems and systems of inequalities in which each no 
constraint has more than two participating variables. 
These systems have properties which allow for more 
efficient solution techniques than do more general 
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systems. We also describe the (generalized) trans- 
shipment problem, which is related to these systems. 

Megiddo (1983) presented a strongly polynomial 
algorithm which finds a feasible solution to inequality 
systems in which each no constraint has more than 
two participating variables. In Section 2, we show how 
the algorithm can be used to find a feasible solution 
to a related system, Ax = b, x : 0, in which no variable 
appears in more than two equations in strongly 
polynomial time for b belonging to some set Q. In 
Section 3, we show that if the system is also a pre- 
Leontief substitution system, then an optimal solution 
to any LP having the system as a constraint set (and 
its dual) can be found in strongly polynomial time. 
Thus, we extend the list of LP classes that are known 
to be solvable by a strongly polynomial algorithm. 

1. PRELIMINARIES 

1.1. Notation 

Let A.. denote the jth column of A and Ai* denote the 
ith row of A. For a set S C {1 ... n , A*s is defined to 
be the submatrix of A consisting only of those columns 
with an index in S. Similarly, AR* is defined to be the 
submatrix consisting only of those rows with indices 
in R C {1. . . m[. For a (column) vector, v, we let VR 

denote the vector consisting of the elements with 
indices in R. 

A set of m linearly independent columns of A is 
called a basis. If A*S is a basis, we say that it is feasible 
for the system in P if the unique (basic) solution to 
the system, A*SxS = b, is such that xs 2 0 (i.e., if 
A*S b is nonnegative). The basis A*s is feasible 
for the system in D if the unique solution, ys E R'm, 
to YTA*s = cs is such that ys A*j < cj for all j 4 S. 

We say that a system of linear constraints has a 
maximal solution if there exists a finite feasible solu- 
tion, y*, such that y* : ' for any feasible solution D. 
Similarly, the system has a minimal solution if there 
exists a finite feasible, y*, such that y* < ' for any 
feasible j. Obviously, a maximal (minimal) solution 
is optimal for a maximization (minimization) LP 
problem with a nonnegative objective function, if such 
a solution exists. 

1.2. Leontief Substitution Systems 

If a matrix A has no more that one positive element 
in any column it is called a pre-Leontief matrix. The 
system Ax = b, x 2 0 is called a pre-Leontief substi- 
tution system (PLSS) if A is pre-Leontief and b is a 
nonnegative vector. A is called a Leontief matrix if 
there exists at least one solution to the PLSS, whenever 

b is strictly positive. The system is called a Leontief 
substitution system (LSS) if A is Leontief and b is 
strictly positive. 

The relationship between pre-Leontief and Leontief 
substitution systems is described by the following 
result due to Veinott (1968). 

Proposition 1. If Ax = b, x , 0 is a PLSS, with at 
least one feasible solution, then A and b can be parti- 
tioned after suitably permuting rows and columns to 
take the form: 

( A 3A)(i )7 I(b _) xl , X2 _ 0 

where 

i. A' is a Leontief matrix, and 
ii. x is basic feasible solution to A 'x' = b', xl I 0 if 

and only if (xl, 0) is a basic feasible solution to 
Ax = b, x : 0. 

Leontief substitution systems and their feasible bases 
are discussed in detail by Veinott (1968) and Koehler, 
Whinston and Wright (1975). LSS have many prop- 
erties not found in more general systems, so they are 
worthy of special consideration. For instance, every 
feasible basis for an LSS has a nonnegative inverse 
(Dantzig 1955), so the system has a feasible solution 
for any nonnegative right-hand side. The following 
property of Leontief matrices also serves to be partic- 
ularly useful. 

Proposition 2. If A is a Leontief matrix, then the 
system A Ty < c, has a finite maximal solution for all 
c for which the system is feasible. Furthermore, the 
system A T y : c, has a finite minimal solution for all 
cfor which the system is feasible. 

A proof of this result is presented by Cottle and 
Veinott (1972), who characterize polyhedral sets 
defined by inequality systems with maximal (minimal) 
solutions. 

1.3. Constraint Systems With Two Variables 
Per Inequality 

Consider cases of P and D in which every column in 
matrix A contains no more than two nonzero ele- 
ments. We may chose to represent the structure of the 
constraint matrix by way of an undirected graph with 
n edges, corresponding to the columns of A. 

If the kth column has nonzero elements in rows i 
and j, then edge ek in the graph links nodes i and j 
(i.e., ek = {i, j4). If the column has only one nonzero 
element located in row j, then ek links node j to a root 
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node 0. A path of length K from node i to node]j is a 
sequence of adjacent edges of the form {{i, hil, 
{hi, h2l, . . ., I hK- II A}. 

Shostak (1981) describes a methodology by which 
the graph structure may be used to obtain a feasible 
solution to D (i.e., where the inequalities are of 
the form, ayj + byi < c). Suppose that the system 
contains the pair of constraints, aiyi + ajyj < cl and 
bkyk - bjYj < c2, where both aj and bj are strictly 
positive. A nonnegative linear combination of these 
constraints impliesAthe (redundant) constraint, 

(bjai) yi + (ajbk) Yk < (bjcI + ajc2), 

which also involves no more than two variables. 
(Either of ai or bk may be 0.) 

Generating a new constraint by combining a pair of 
constraints in this way is called performing an admis- 
sible aggregation. Notice that the admissible aggrega- 
tion above involves a pair of constraints which 
corresponds to adjacent edges, {i, jI and {j, k , in the 
graph representing A. We define an admissible path 
to be a sequence of admissible aggregations of a set of 
constraints which corresponds to a path in the graph. 
(It should be made clear that not every adjacent pair 
of edges in the graph corresponds to an admissible 
aggregation because the signs of the coefficients 
involved must be appropriate.) 

Combining constraints along an admissible path 
from node i to node j determines a constraint involv- 
ing only variables yi and yj. Thus, an admissible path 
from node i to node 0 or from node i to itself deter- 
mines a constraint involving only yi, revealing either 
an implicit upper bound or an implicit lower bound 
to the variable yj. 

We define y3ax and y"'i to be, respectively, the 
tightest upper bound and lower bound to yk obtainable 
from admissible paths in the graph. If no such upper 
(lower) bound exists, then y'ax (ykinl) is set to infinity 
(negative infinity). 

From an adaptation of a theorem by Shostak (198 1) 
we find the following proposition. 

Proposition 3. The system A Ty < c is feasible if and 
only ifymax > y in for all i. Furthermore, if the system 
is feasible, then ymax and yi"' are, respectively, the 
largest and smallest values y, can take in any feasible 
solution to the system. 

Aspvall and Shiloach (1980) present an algorithm 
which finds ykax and ykfi for all k in O(m3n L) time. 
The authors also describe a routine which finds a 
feasible solution to the system within the same time 
bound. Megiddo (1983) uses a technique, which we 

call "parameterized searching," to improve the run- 
ning time bound on the algorithm to O(m3n log n) 
time (i.e., strongly polynomial time). 

1.4. The (Generalized) Transshipment Problem 

Let G = IN, El be a directed graph with node 
set, N = 1O, 1, . . ., m 1, and edge set, 

E= {ek= (i, j) Ik l.n 1. 

The "flow" into edge ek = (i, j) is defined to be a 
number assigned to the edge, which represents the 
amount of some commodity sent from node i to node 
j. Associated with each edge is a positive "flow multi- 
plier," dk. If the flow assigned to ek is xk, then dkxk 

units are received at node j. 
The vector b E R'm represents the total demand for 

the commodity at each of nodes 1 . . . m (the negative 
demand at node i corresponds to a "supply" that must 
be depleted). The quantity Ck represents the cost 
incurred for each unit of flow assigned to edge ek. The 
generalized transshipment problem, (GTP) is defined 
to be the task of finding an assignment of flow to the 
edges which satisfies the demand at nodes 1 ... m at 
minimum total cost. The ordinary transshipment 
problem (TP) is the special case of GTP where each 
of the flow multipliers is unity. 

A commonly used LP formulation for the GTP is 
as follows. 

Problem GTP 

n 

Minimize E CkXk 
k=1 

subject to E dkxk - Xk = b 
k:ek= *,j) k: ek (j,*) 

j= 1 .m 

Xk > 0 

which has, as its dual: 

Problem DGTP 

m 

Maximize biyi 

subjectto yj-yi <cij (i,j) =ek k= 1 ...n 

Yo = 0. 

A "flow conservation" constraint for nodwe 0 is not 
included in the primal LP representation. (Accord- 
ingly, the variable in the dual problem corresponding 
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to this node is set to 0.) This allows our discussion to 
be applicable to the ordinary TP case, where the 
constraint would be redundant. Notice that GTP and 
DTP can be represented as cases of P and D, respec- 
tively, in which the constraint matrix A has no more 
than two nonzero elements in any of its columns and 
both A and -A are pre-Leontief. 

Since it is possible for an edge multiplier to have a 
length, which is not boundable by a polynomial in n 
and m, an arbitrary instance of GTP is not guaranteed 
to be solvable in strongly polynomial time by any of 
the algorithms described earlier. 

It turns out, though, that efficient algorithms exist 
for some special cases of GTP. Goldberg, Plotkin and 
Tardos (1988) provide the first polynomial algorithms 
for the capacitated case which are combinatorial in 
nature (i.e., not based on an interior point or ellipsoid 
method). Charnes and Raike (1966) present a one- 
pass method which solves GTP when b > 0 and 
c 3 0 and the network either has no directed cycles or 
no edges with a flow multiplier greater than one. In 
such cases, the feasible bases for P, if any exist, have 
a structure which makes the problem solvable in 
O(m 2) time by a variant of Dijkstra's (1959) method. 
The authors also show that if A, without the columns 
corresponding to the edges incident to node 0, is row 
rank deficient, then there exist positive diagonal scal- 
ing matrices, R and C (of appropriate dimension), 
such that RAC is the node-arc incidence matrix of an 
ordinary network. Glover and Klingman (1973) give 
an efficient method for finding R and C, if they exist. 
This case is then solvable in strongly polynomial time, 
for any values of b or c by the method of Tardos 
(1985). 

2. STRONGLY POLYNOMIAL ALGORITHMS 

2.1. A Feasibility Problem 

Consider instances of P and D, where matrix A has 
no more than two nonzero elements in any column. 
Recall that y7max and y7mif are, respectively, the largest 
and smallest values yi can take in any feasible solution 
to the system in D. Let 

I+= i E- {l. . m} I Iyim'x < 0oo 

I- = {i E- {I . .. m}I I ymln > _-oo 

Q = {w E- Rm I wi> 0 implies i E I', 

wi < 0 implies i E I-}. 

Lemma 1. A feasible solution to the system in P, where 
b E Q can be found in O(m3n log n) time. 

Proof. y?"ax can be interpreted as the optimal objective 
value for D when b = ei, the ith column of an m x m 
identity matrix. Similarly, yTfl can be interpreted as 
the optimal objective value for D when b = -ei. From 
duality theory, we know that if yiax is finite, then the 
system, Ax = ei, x > 0, has a feasible solution and if 
yT"l is finite, then the system, Ax = -ei, x , 0, has a 
feasible solution. 

For i E II, the constraint yi < yXa, is obtained by 
taking a nonnegative linear combination of a set of 
constraints in the system in D that corresponds to 
an admissible path in the graph representing A. Let 
x4 E R' be the vector whose components are these 
nonnegative multipliers. Similarly, for i E I-, let 
Xi E- R' the vector of nonnegative multipliers used to 
generate the bound, Yi I yifl* 

It is easy to verify that, Ax' = ei, xJ > 0 and 
Ax_ = -ei, x_ , 0. For any b in Q, a feasible solution 
to the system in P, xk, is obtained as 

x= max(bi, 0) x x+ + E max(-bi, 0) x x-. 
iEi+ i+I 

By proper "bookkeeping" in the algorithm of 
Megiddo (1983), it is possible to find the set of con- 
straints that determine each of y7max and yimi and the 
associated nonnegative multipliers which determine 
these bounds. All of this can be accomplished in 
O(m3n log n) time. 

2.2 A Special Class of LPs 

Consider instances of P and D, where A is pre-Leontief 
and has no more than two nonzero elements in any 
column, and b is nonnegative. (Note: certain cases of 
GTP and DGTP can be cast as problems in this class.) 

Lemma 2. Suppose that the system in D is feasible. If 
yinax is finite for i E M1 and infinite for i E M2, then 
P has a feasible solution if and only if bi = 0 for 
all i E M2. 

Proof. If bi = 0 for all i E M2, then XiEM, biy Tax is an 
upper bound to the optimal objective function value 
of D. Since D is feasible and bounded, P must also be 
feasible. 

If, on the other hand, P is feasible, with bi > 0 for 
some i E M2, then Ai* must be one of the rows in the 
Leontief submatrix of A, described in Proposition 1. 
Because the feasible bases of LSS have nonnegative 
inverses, it follows that the system, Ax = ei, x > 0, has 
a feasible solution, say x. By weak duality, c t 
provides a finite upper bound to the optimal objective 
of: 
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Maximize yi 

subject to A Ty < C 

which contradicts that y Tax is infinite. 

Permute the rows and columns of A so that 

A =AMN,1 AmN2 AI A2) 
0 AM2N2J 0 A3J 

From the proof of the lemma, if P is feasible, then 
A1 is a Leontief submatrix of A. So the system, 
A [TYM, CN, has a finite maximal solution, ymax. Since 
bM, is nonnegative and bM2 = 0, we can conclude that 
the vector y* = (YM,x, YM2) is an optimal solution to 
D, where DM2 satisfies 

A3 YM2 C2 - A2 M 

(Note that the existence of a feasible solution to this 
system is assured because for each i E M2, y7 ax iS 
infinite, hence, larger than y7 in. It could be found in 
O(m2n) time (Aspvall and Shiloach). 

From duality theory and Proposition 1, if y* is an 
optimal solution to D, then an optimal solution to P 
is x* = (xs, 0), which can be obtained by finding a 
feasible solution to the system 

AM,SXS = bM, xs _ 0 

where S = {j E N1 I (A Ty*)j = cj}. Since y Tax is finite 
for all i E M1, this can be accomplished by the 
methodology described in the previous section. Thus, 
we have proved the following theorem. 

Theorem 1. IfA is a pre-Leontief matrix with no more 
than two nonzero elements in any column, then opti- 
mal solutions to P and D, where b > 0, if they exist, 
can befound in O(m3n log n) time. 

Corollary. Any instance of GTP with either b < 0 or 
b > 0 can be solved in strongly polynomial time. 

(Note that for GTP, the statements made above apply 
to the case where b < 0, because for GTP -Ax = -b, 
x > 0 is also a pre-Leontief substitution system.) 

3. REMARKS 

After having found efficient solution techniques for 
LPs with a constraint set which comprises an LSS 
whose variables appear in no more than two con- 
straints, we are curious as to whether there are other 
classes of LPs with Leontief constraint matrices for 
which an efficient algorithm can be found. It seems 
that the special properties associated with these prob- 

lems can be exploited to allow for a strongly polynom- 
ial algorithm for a more general class of problems, 
particularly since there is a characterization of feasible 
bases which is not dependent on the particular values 
of the numbers in the constraint matrix. 

Jeroslow et al. ( 1989) describe properties associated 
with a class of LSS, which are called "gainfree." By 
exploiting some hypergraph representation of the sys- 
tem, they have shown that the class of LPs with a 
gainfree Leontief constraint matrix can be solved in 
strongly polynomial time. They also show that since 
primal feasible bases for these LPs are triangular, 
instances with an integral constraint matrix and 
rational right-hand side are totally dual integral. 

The notion of parameterized searching, which was 
originally introduced by Megiddo (1979), has proven 
to be a very useful tool for algorithmic development. 
Performing a parameterized search, in place of, say, a 
series of binary searches not only helps in improving 
the running time of existing algorithms, but has led 
the way for the development of new efficient algo- 
rithms. Adler and Cosares (1989) describe a "nested" 
version of the technique which has led the way for the 
solution of additional classes of the LP problem in 
strongly polynomial time. 
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