
On Simplex Pivoting Rules

and Complexity Theory

Ilan Adler, Christos Papadimitriou�, and Aviad Rubinstein�

University of California, Berkeley CA 94720, USA

Abstract. We show that there are simplex pivoting rules for which it
is PSPACE-complete to tell if a particular basis will appear on the al-
gorithm’s path. Such rules cannot be the basis of a strongly polynomial
algorithm, unless P = PSPACE. We conjecture that the same can be
shown for most known variants of the simplex method. However, we also
point out that Dantzig’s shadow vertex algorithm has a polynomial path
problem. Finally, we discuss in the same context randomized pivoting
rules.

Keywords: linear programming, the simplex method, computational
complexity.

1 Introduction

Linear programming was famously solved in the late 1940s by Dantzig’s sim-
plex method [8]; however, many variants of the simplex method were eventually
proved to have exponential worst-case performance [21], while, around the same
time, Karp’s 1972 paper on NP-completeness [18] mentions linear programming
as a rare problem in NP which resists classification as either NP-complete or
polynomial-time solvable. Khachiyan’s ellipsoid algorithm [20] resolved positively
this open question in 1979, but was broadly perceived as a poor competitor to
the simplex method. Not long after that, Karmarkar’s interior point algorithm
[19] provided a practically viable polynomial alternative to the simplex method.
However, there was still a sense of dissatisfaction in the community: The num-
ber of iterations of both the ellipsoid algorithm and the interior point method
depend not just on the dimensions of the problem (the number of variables d
and the number of inequalities n) but also on the number of bits needed to rep-
resent the numbers in the input; such algorithms are sometimes called “weakly
polynomial”.

A strongly polynomial algorithm for linear programming (or any problem
whose input is an array of integers) is one that is a polynomial-time algorithm in
the ordinary sense (always stops within a number of steps that is polynomial in
the total number of bits in the input), but it also takes a number of elementary
arithmetic operations that is polynomial in the dimension of the input array.

� The research of Christos Papadimitriou and Aviad Rubinstein is supported by NSF
Grant CCF-0964033.

J. Lee and J. Vygen (Eds.): IPCO 2014, LNCS 8494, pp. 13–24, 2014.
c© Springer International Publishing Switzerland 2014

14 I. Adler, C. Papadimitriou, and A. Rubinstein

Strongly polynomial algorithms exist for many network-related special cases of
linear programming, as was first shown in [11]. This was extended by Tardos
[30] who established the existence of such an algorithm for “combinatorial” lin-
ear programs, that is, linear programs whose constraint matrix is 0-1 (or, more
generally, contains integers that are at most exponentially large in the dimen-
sions). However, no strongly polynomial algorithm is known for general linear
programming.

The following summarizes one of the most important open problems in opti-
mization and the theory of algorithms and complexity:

Conjecture 1. There is a strongly polynomial algorithm for linear programming.

One particularly attractive direction for a positive answer for this conjecture is
the search for polynomial variants of the simplex method. It would be wonderful
to discover a pivoting rule for the simplex method which (unlike all known
such methods) always finds the optimum after a number of iterations that is
polynomial in d and n. Hence the following is an interesting speculation:

Conjecture 2. There is a pivoting rule for the simplex method that terminates
after a number of iterations that is, in expectation, polynomial in d and n.

In relation to Conjecture 2, clever randomized pivoting rules of a particular re-
cursive sort were discovered rather recently, with worst-case number of iterations
that has a subexponential dependence on d [16,23]. Other recent results related
to Conjecture 1 can be found in [6,34].

In the next section we formalize the concept of a pivoting rule: A method for
jumping from one basic solution to an adjacent one that (1) is strongly polynomial
per iteration; (2) is guaranteed to increase a potential function at each step; and
(3) is guaranteed to always terminate at the optimum (or certify infeasibility or
unboundedness). We also give several examples of such rules. It is important to
note that in our definition we allow pivoting rules to jump to infeasible bases in
order to include pivoting rules other than of the primal type. Also, our original
definition in Section 2 restricts pivoting rules to be deterministic; we discuss the
important subject of randomized rules in Section 5.

Recently there has been a glimmer of hope that some stronger forms of the
two conjectures could be disproved, after the disproof of the Hirsch Conjecture
[27]. The Hirsch conjecture [9] posited that the diameter of a d-dimensional
polytope with n facets is at most n − d, the largest known lower bound. The
best known upper bound for this diameter is the quasi-polynomial bounds of [17].
But even a super-polynomial lower bound would only falsify the conjectures for
primal pivoting rules (ones going through only feasible bases, i.e., vertices of
the polytope), but not for the many other kinds of pivoting rules (see the next
section). Furthermore, it is now clear that the techniques involved in the disproof
of the Hirsch conjecture are incapable of establishing a nonlinear lower bound on
the diameter of polytopes, and it is widely believed that there is a polynomial
upper bound on the diameter of polytopes.

On Simplex Pivoting Rules and Complexity Theory 15

In this paper we contemplate whether the concepts and methods of complexity
theory can be applied productively to illuminate the problem of strongly poly-
nomial algorithms for linear programming and Conjecture 1. We show a result
suggesting that PSPACE-completeness may be relevant.

In particular, we propose to classify deterministic pivoting rules by the com-
plexity of the following problem, which we call the path problem of a pivoting
rule: Given a linear program and a basic solution, will this latter one appear on
the pivot rule’s path? Recall that PSPACE is the class of problems solvable in
polynomial memory. This class contains NP, and it is strongly believed to con-
tain it strictly. The path problem of a pivoting rule is clearly in PSPACE,
because it can be solved by following the (possibly exponentially long) path of
the rule, reusing space; if it is PSPACE-complete, then the pivoting rule cannot
be polynomial (unless, of course, P = PSPACE).

But it is not a priori clear that there are pivoting rules for which the path
problem is PSPACE-complete. We show (Theorem 1) that they do exist; unfor-
tunately, we prove this not for one of the many classical pivoting rules, but for a
new, explicitly constructed — and fairly unnatural — one. We conjecture that
the same result holds for essentially all known deterministic pivoting rules; such
a proof looks quite challenging; obviously, in such a proof much more will need
to be encoded in the linear program (which, in the present proof, is of logarith-
mic complexity and isomorphic to {0, 1}n). However, we do exhibit (Theorem
2) a pivoting rule whose path problem is in P: It is Dantzig’s well-known self-
dual simplex [9] (also known as shadow vertex algorithm), which is known to be
exponential in the worst case [24], but has been used in several sophisticated
algorithmic upper bounds for linear programming, such as average-case analysis
and smoothness [5,28,2,1,33,29]. We briefly discuss the apparent connection be-
tween the average-case performance of a pivoting rule and the complexity of its
path problem.

The motivation for our approach came from recent results establishing that it
is PSPACE-complete to compute the final result of certain well known algorithms
for finding fix points and equilibria [13]. However, the proof techniques used here
are completely different from those in [13].

2 Definitions

Consider an algorithm whose input is an array of n integers. The algorithm is
called strongly polynomial if

– it is polynomial-time as a Turing machine, and
– if one assumes that all elementary arithmetic operations have cost one, the

worst-case complexity of the algorithm is bounded by a polynomial in n, and
is therefore independent of the size of the input integers.

In linear programming one seeks to maximize cTx subject to Ax = b, x ≥ 0,
where A is m×n. An m×m nonsingular submatrix B of A is a basis. A feasible
basis B is one for which the system BxB = b (where by xB we denote vector x

16 I. Adler, C. Papadimitriou, and A. Rubinstein

restricted to the coordinates that correspond to B) has a nonnegative solution;
in this case, xB is called a basic feasible solution. Basic feasible solutions are
important because they render linear programming a combinatorial problem, in
that the optimum, if it exists, occurs at one of them. We say that two bases are
adjacent if they differ in only one column.

There are many versions of linear programming (with inequality constraints,
minimization, unrestricted in sign variables, etc.) but they are all known to be
easily interreducible. We shall feel free to express linear programs in the most
convenient of these.

We shall assume that the linear programs under consideration are non-
degenerate (no two bases result in the same basic solution). Detecting this con-
dition is nontrivial (NP-hard, as it turns out). However, there are several reasons
why this very convenient assumption is inconsequential. First, a random pertur-
bation of a linear program (obtained, say, by adding a random small vector to
b) is non-degenerate with probability one. And second, simplex-like algorithms
can typically be modified to essentially perform (deterministic versions of) this
perturbation on-line, thus dealing with degeneracy.

We next define a class of algorithms for linear programming that are variants
of the simplex method, what we call pivoting rules. To start, we recall from linear
programming theory three important kinds of bases B, called terminal bases:

– optimality: B−1b ≥ 0, cT − cTBB
−1A ≤ 0. B is the optimal feasible basis of

the linear program.
– unboundedness: B−1Aj ≤ 0, cj − cTBB

−1Aj > 0 for some column Aj of A.
This implies that the linear program is unbounded if feasible.

– infeasibility: (B−1)iA ≥ 0, (B−1)ib < 0 for some row (B−1)i of B−1. This
means the linear program is infeasible.

Notice that, given a basis, it can be decided in strongly polynomial time whether
it is terminal (and of which kind).

Definition 1. A pivoting rule R is a strongly polynomial algorithm which, given
a linear program (A, b, c):

– produces an initial basis B0;
– given in addition a basis B that is not terminal, it produces an adjacent basis

nR(B) such that φR(nR(B)) > φR(B), where φR is a potential function.

The path of pivoting rule R for the linear program (A, b, c) is the sequence of
bases (B0, nR(B0), n

2
R(B0), . . . , , n

k
R(B0)), ending at a terminal basis, produced

by R.

Obviously, any pivoting rule constitutes a correct algorithm for linear program-
ming, since it will terminate (by monotonicity and finiteness), and can only
terminate at a terminal basis. Notice that pivoting rules may pass through in-
feasible basic solutions (for example, they can start with one). Incidentally, the
inclusion of infeasible bases implies that such rules operate not on the linear
program’s polytope, but on its linear arrangement. Since the latter has diameter

On Simplex Pivoting Rules and Complexity Theory 17

O(mn), even the existence of polytopes with super-polynomial diameter will not
rule out strongly polynomial pivoting rules.

There are many known deterministic pivoting rules (ties are broken lexico-
graphically, say):

1. Dantzig’s rule (steepest descent). In this rule (as well as in all other
primal rules that follow), given a feasible basis B we first calculate, for each
index j not in the basis the objective increase gradient cBj = cj − cTBB

−1Aj .

Define J(B) = {j : cBj > 0}. Dantzig’s rule selects the j ∈ J(B) with largest

cBj and brings it in the basis. By non-degeneracy (if not a terminal basis),
this completely determines the next basis. As with all primal pivoting rules,
the potential function φR is the objective.

2. Steepest edge rule. Instead of the maximum cBj , select the largest
cBj

||B−1Aj || .
3. Greatest improvement rule. We bring in the index that results in the

largest increment of the objective.
4. Bland’s rule. Select the smallest j ∈ J(B).

For all these rules, however, we have not specified the original basis B0. This
is obviously a problem, since all these rules are primal and need feasible
bases, and a feasible basis may not be a priori available. Primal pivoting
rules such as these are best applied not on the original m×n linear program
(A, b, c), but to a simple m× 2n variant called “the big M version,” defined
as (A|−A), b, (c|−M, . . . ,−M), where M is a large number (M can either be
handled symbolically, or be given an appropriate value computed in strongly
polynomial time). It is trivial now to find an initial feasible basis. In fact,
the pivoting rule running on the new linear program can be thought of as a
slightly modified pivoting rule acting on the original linear program (when
j ∈ J(B), Aj is negated, and cj is replaced by −M).

5. Shadow vertex rule. Here B0 is any basis. Given B0, we construct two
vectors c0 and b0 such that B0 is a feasible basis, and also a dual feasible
basis, of the relaxed linear program max cT0 x subject to Ax = b0, x ≥ 0. Now
consider the line segment between these two linear programs, with right-hand
side and objective λb + (1 − λ)b0 and λc + (1 − λ)c0, respectively. Moving
on this line segment from λ = 0, we have both primal-feasible and dual-
feasible (and hence optimal) solutions. At some point, one of the two will
become infeasible (and only one, by non-degeneracy). We find a new basic
solution by exchanging variables as dictated by the violation, and continue.
The potential function is the current λ. When λ = 1 we are at the optimum.

6. Criss-cross rules. A class of pivoting rules outside our framework, whose
first variant appeared in [35], goes from one (possibly infeasible) basis to the
other and convergence to a terminal basis is proved through a combinatorial
argument that does not involve an explicit potential function. However, cer-
tain such rules (such as the criss-cross pivoting rule suggested in [32]) have
been shown ([12]) to possess a monotone potential function, and so they can
be expressed within our framework.

7. Dual pivoting rules. Naturally, any of the primal pivoting rules can work
on the dual.

18 I. Adler, C. Papadimitriou, and A. Rubinstein

8. Primal-dual pivoting rule. This classical algorithm [10] is an important
tool for developing simplex-inspired combinatorial algorithms for a broad
set of network problems, acting as a reduction from weighted to unweighted
combinatorial problems. It does not conform to our framework, because it
involves an inner loop solving a full-fledged linear program.

9. Pivoting rules with state. Finally, also outside our framework are pivoting
rules relying on data other than A, b, c, and B, for example a pivoting rule
relying on statistics of the history of pivoting such as selecting to include
the index which has in the past been selected least frequently.

10. Randomized pivoting rules. There are several proposed randomized piv-
oting rules. The ambition here is that the rule’s expected path length is
polynomial. The simplest one [9] is to pick a random index in J(B). An-
other important class of randomized rules are the random facet rules used
in the proofs of subexponential diameter bounds [16,17,23]. We discuss ran-
domized pivoting rules in Section 5.

A pivoting rule is strongly polynomial if for any linear program the length
of the path is bounded above by a polynomial in m and n. All pivoting rules
within our framework mentioned above are known not to be strongly polynomial,
in that for each one of them there is an explicit family of linear programs with
non-polynomial path length, see [3] for a unifying survey.

Explicit constructions are one way of ruling out pivoting rules. But is there a
complexity-theoretic way? Our interest was sparked by the story of a well-known
pivoting rule for a problem other than linear programming: The Lemke-Howson
algorithm for two-player Nash equilibrium, discovered in the 1960s [22]. The first
explicit construction was obtained decades later [31] and was extremely compli-
cated. More recently, it was established that the problem of finding the Nash
equilibrium discovered by the Lemke-Howson algorithm is PSPACE-complete
[13] (and thus the algorithm cannot be polynomial, as long as P �= PSPACE).
Remarkably, the PSPACE-completeness proof was much simpler than the ex-
plicit construction. We are led to the main definition of this paper:

Definition 2. The path problem associated with a pivoting rule R is the fol-
lowing: Given a linear program and a basis B, does B appear on the path of R
for this linear program?

A pivoting rule is called intractable if its path problem is PSPACE-complete. A
pivoting rule is tractable if its path problem can be solved in strongly polynomial
time.

The reason why this concept may be useful in understanding the complexity of
linear programming is the following straightforward result:

Proposition 1. If an intractable pivoting rule is strongly polynomial, then
PSPACE = P.

But are there examples of these two categories? This is the subject of the next
two sections.

On Simplex Pivoting Rules and Complexity Theory 19

3 An Intractable Pivoting Rule

This section is devoted to the proof of the following theorem.

Theorem 1. There is an intractable pivoting rule R.

The PSPACE-completeness reduction is based on the Klee-Minty construction,
the original explicit exponential example for a variant of the simplex method
[21], which we recall next.

The d-dimensional Klee-Minty cube is the following linear program:

max x1

0 ≤ xd ≤ 1

εxi+1 ≤ xi ≤ 1− εxi+1, i = 1, . . . , d− 1

xi ≥ 0, i = 1, . . . , d

The feasible region of this linear program is a distorted d-hypercube (it ob-
viously describes precisely the d-hypercube when ε = 0): A polytope whose
vertices are within a radius of ε from those of a hypercube, and are therefore in
one-to-one correspondence with the elements of {0, 1}d. Thus the feasible bases
will also be represented as bit strings in {0, 1}d. The objective function has a
minimum at 0d (a string of d 0’s) and a maximum at 10d−1.

Let us now recall a well-known order on {0, 1}d called Gray code and denoted
Gd. G1 is simply the order (0, 1). Inductively, the Gray code Gi+1 is (0Gi, 1G

R
i),

by which we mean, the sequence Gi with each bit string preceded by a 0, followed
by the reverse of the order Gi, this time with each bit string preceded by 1. If
0 ≤ k < 2d, we denote by Gd[k] the k-th bit string in Gd.

Gd is a bijection between {0, 1, . . . , 2d−1} and {0, 1}d, and therefore we can de-
fine the successor function Sd : {0, 1}d �→ {0, 1}d as follows: Sd(x) = Gd[G

−1
d (x)+

1]. The following is straightforward:

Lemma 1. Sd can be computed in polynomial time.

Consider a vertex of the Klee-Minty cube of dimension d — equivalently, a bit
string (b1, . . . , bd) ∈ {0, 1}d. This vertex has d adjacent vertices, each obtained by
flipping one of the bi’s. We call the i-th coordinate increasing at this vertex if the
objective increases by flipping bi. The following are known important properties
of the Klee-Minty cube:

Lemma 2. (a) The i-th coordinate is increasing if and only if
∑i

j=1 bj is even.
(b) Therefore the sequence of the vertices sorted in increasing objective is pre-

cisely Gd.

We next describe the starting PSPACE-complete problem (see e.g., [25] for def-
initions regarding PSPACE and Boolean circuits).Suppose that we are given a
Boolean circuit C with n input bits and n output bits, such that for all inputs x,

20 I. Adler, C. Papadimitriou, and A. Rubinstein

x and C(x) always differ in one bit.The path of C is the sequence (xi, i = 0, . . .),
where x0 = 0n and xi+1 = C(xi). Consider now this problem: C-path: Given
C and xC ∈ {0, 1}n, is xC on the path of C? It is obviously in PSPACE (one
need only try the first 2n bit strings in the path of C, reusing space; if xC is
not reached by that time, we are in a loop and xC will never be reached). The
following is straightforward:

Lemma 3. There is a family of circuits C of size polynomial in the number of
inputs and of polynomial complexity such that C-path is PSPACE-complete.

The reduction proceeds as follows: Given an input xC ∈ {0, 1}n, we shall con-
struct a linear program and a basis B̂ such that B̂ lies on the path of rule R (yet
to be described) if and only if xC lies on the path of C. The linear program is
the Klee-Minty cube of dimension 2n. The last (least significant) n coordinates
of the cube will serve to encode the current bit string on the path of C, while
the first n coordinates will maintain a counter in Gray code. We denote the
last string of the Gray code, 10n−1, by xG. The sought basis B̂ is taken to be
B̂ = xGxC .

Next we describe the pivoting rule R. In fact, it suffices to define R only on
Klee-Minty cubes of even dimension — on any other linear program, R can be
any pivoting rule, say steepest descent. First, the initial basis of R is B0 = 02n.
Second, here is the description of how R modifies the current basis B (which,
since the linear program is the Klee-Minty cube of dimension 2n is represented
by a bit string of length 2n):

Pivoting Rule R on basis B:

1. If B = 102n−1, this is a terminal basis and we are done. Otherwise, let
B = (B1, B2), each a string of length n.

2. If B2 = xC then R(B) = (Sn(B1), B2).
3. Otherwise, if B1 = xG then R(B) = (B1, Sn(B2)).
4. Otherwise, construct the circuit with n inputs in the family C.
5. Compute C(B2); suppose that B2 and C(B2) differ in the i-th place (by

assumption, they only differ in one).
6. If the n+ i-th coordinate of B is increasing, then R(B) = (B1, C(B2)).
7. Otherwise, R(B) = (Sn(B1), B2).

To explain the workings of R, the first n bits are a counter, and the last n
bits encode the current bit string on the path of C from 0n. If either the first n
bits are xG or the last n bits are xC , then R just counts up in the other counter
(Steps 2 and 3). Otherwise, (Steps 4 and 5), C(B2) is computed. The intention
now is to update the last n bits to be C(B2). If the flipped coordinate happens
to be increasing in B, then this is done immediately (Step 6). But if it is not,
then we do the following maneuver: We increment the B1 counter by flipping
the bit in B1 that leads to the next string in the Gray code (Step 7). This way,
in the next invocation of the pivot rule the flipped bit will be increasing (by
Lemma 2(a)).

On Simplex Pivoting Rules and Complexity Theory 21

To show that R is a pivoting rule, it remains to show that it is strongly
polynomial, and that there is a potential function φR such that the pivot step of
R is always monotonically increasing. The former is immediate. For the latter,
φR(B) is the value of the objective x1 in the basic feasible solution represented
by B. It is easy to see by inspection of Steps 2, 3, 6, and 7 that in each of these
four cases φR(R(B)) > φR(B).

Finally, we must show that B̂ is on the path of R if and only if xC is on the
path of C. If xC is on the path of C then eventually B2 will be xC , after at most
2n− 1 steps, and from then on Step 2 will be executed to increment the counter
B1. This counter must go through B̂ just before arriving at the terminal basis.
If xC is not on the path of C then the path of C will cycle until eventually Step
7 will be executed for a 2n-th time (it can be easily checked that the cycling of
the path of C does not avoid Step 7), at which point B1 = xG. From then on B̂
cannot be reached. This completes the proof of Theorem 1. �	

4 A Tractable Pivoting Rule

The pivoting rule we proved intractable is not a natural one. We conjecture
that essentially all the pivoting rules described in the last section are intractable
(even though proving such a result seems to us challenging). However, here we
point out that there is a natural, classical pivoting rule that is tractable:

Theorem 2. The shadow vertex pivoting rule is tractable.

Proof. Given a linear program (A, b, c), let B0 be the initial basis, and let b0
and c0 be the corresponding initial values of the primal and dual right-hand-side
vectors. Given a basis B, we claim that the following is a necessary and sufficient
condition that B lies on the path of shadow vertex:

There is a real number λ ∈ [0, 1] such that (1 − λ)B−1b0 + λB−1b ≥ 0
and (1 − λ)(cT0 − (c0)

T
BB

−1A) + λ(cT − cTBB
−1A) ≤ 0.

In proof, any basis on the path has a non-empty interval of λ’s for which
these inequalities hold. And if for a given basis B this condition is satisfied,
then the inequalities are satisfied for a subinterval of [0, 1]. If we assume, for
contradiction, that B is not on the path of shadow vertex, then we can run the
shadow vertex pivoting rule forward and backward from B, and eventually arrive
from a different path to the beginning and end, contradicting non-degeneracy.
As the condition is a system of 2n linear inequalities with one unknown, this
completes the proof. �	
There is an interesting story here, connecting tractability of pivoting rules and
the saga of the average-case analysis of the simplex method. During the early
1980s, and in the wake of the ellipsoid algorithm, average analysis of the simplex
method (under some reasonable distribution of linear programs) was an impor-
tant and timely open question, and indeed there was a flurry of work on that

22 I. Adler, C. Papadimitriou, and A. Rubinstein

problem [5,28,2,1,33]. It was noticed early by researchers working on this problem
that one obstacle in analyzing the average complexity of various versions of the
simplex method was a complete inability to predict the path of pivoting rules —
that is, the apparent intractability of the path problem we are studying here. And
this makes sense: If one cannot characterize well the circumstances under which
a vertex will appear on the path, it is difficult to deduce the average performance
of the algorithm by adding expectations over all vertices. Once Borgwardt [5]
and Smale [28] had the idea of using the shadow vertex pivoting rule in this
context, further progress ensued [2,1,33].

5 Randomized Pivoting Rules

Many pivoting rules are explicitly randomized, aiming at good expected perfor-
mance. Our definition can easily be extended to include randomization: In the
definition of a pivoting rule, R(B) is not a single adjacent basis, but a distri-
bution on the set of adjacent bases (naturally, this set is polynomially small).
Any basis B′ in the support of R(B) must satisfy φR(B

′) > φR(B). Obviously,
deterministic pivoting rules are a special case, and therefore Theorems 1 and 2
trivially apply here too.

What is slightly nontrivial is to define what “intractable” means in this case.
That is, what is the “path problem” for a randomized pivoting rule R? We
believe that the right answer is the following “promise” problem:

Definition 3. Fix a polynomial p and a function f : Z2 �→ [0, 1− 1
p(m,n)]. The

(f, p)-path problem associated with a randomized pivoting rule R is the following:
Given an m×n linear program and a feasible basis B, distinguish between these
two cases: B appears in the execution of R with probability (a) at most f(m,n);
and (b) at least f(m,n) + 1

p(m,n) .

The analog of Proposition 1 is now:

Proposition 2. If a randomized pivoting rule R is strongly polynomial in ex-
pectation, then the (f, p)-path problem of rule R is in BPP, for all f and p.

Recall that BPP is the class of all problems that can be solved by randomized
algorithms, possibly with a small probability or error, see Chapter 10 in [25].

6 Discussion

Pivoting rules constitute a rich and interesting class of algorithmic objects, and
here we focused on one important attribute: whether or not the path problem
of a pivoting rule is tractable. We have pointed out that there is an intractable
pivoting rule, whereas a well-known classical pivoting rule is tractable. The most
important problem we are leaving open is to exhibit a natural intractable pivot-
ing rule. For example, establishing the following would be an important advance:

On Simplex Pivoting Rules and Complexity Theory 23

Conjecture 3. Steepest descent is intractable.

This looks quite challenging. Obviously, in such a proof much more will need to
be encoded in the linear program (which, in the present proof, was of logarithmic
complexity). The ultimate goal is a generic intractability proof that works for
a large class of pivoting rules, thus delimiting the possibilities for a strongly
polynomial algorithm. For example: Are all primal pivoting rules (the ones using
only feasible bases) intractable?

There are pivoting rules beyond linear programming, usually associated with
the linear complementarity problem (LCP, see [7]). They generally do not have a
potential function, and termination is proved (when it is proved) by combinato-
rial arguments. Lemke’s algorithm is a well-known general pivoting rule, known
to terminate with a solution (or with a certification that no solution exists) in
several special cases. It is known to be intractable in general [13], but it can be
shown to be tractable when the matrix is positive definite. We conjecture that
it is intractable when the matrix is positive semidefinite.

References

1. Adler, I., Karp, R.M., Shamir, R.: A Family of Simplex Variants Solving an m
x d Linear Program in Expected Number of Pivot Steps Depending on d Only.
Mathematics of Operations Research 11(4), 570–590 (1986)

2. Adler, I., Megiddo, N.: A Simplex Algorithm whose Average Number of Steps is
Bounded between Two Quadratic Functions of the Smaller Dimension. Journal of
the ACM 32(4), 471–495 (1985)

3. Amenta, N., Ziegler, G.: Deformed products and maximal shadows of polytopes.
In: Advances in Discrete and Computational Geometry, pp. 57–90 (1996)

4. Avis, D., Chvatal, C.: Notes on Bland’s Pivoting Rule. Math. Programming
Study 8, 24–34 (1978)

5. Borgwardt, K.H.: The Average Number of Steps Required by the Simplex Method
is Polynomial. Zeitschrift fur Operations Research 26(1), 157–177 (1982)

6. Chubanov, S.: A strongly polynomial algorithm for linear systems having a binary
solution. Math. Programming 134(2), 533–570 (2012)

7. Cottle, R., Pang, J.-S., Stone, R.E.: The linear complementarity problem. Aca-
demic Press (1992)

8. Dantzig, G.B.: Maximization of a Linear Function of Variables subject to Lin-
ear Inequalities (1947); Published in Koopmans, T.C. (ed.): Activity Analysis of
Production and Allocation, pp. 339–347. Wiley & Chapman-Hall (1951)

9. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press
and the RAND Corporation (1963)

10. Danzig, G.B., Ford, L.R., Fulkerson, D.R.: A Primal-Dual Algorithm for Linear
Programming. In: Kuhn, H.W., Tucker, A.W. (eds.) Linear Inequalities and Re-
lated Systems, pp. 171–181. Princeton University Press (1954)

11. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the ACM 19(2), 248–264 (1972)

12. Fukuda, K., Matsui, T.: On the Finiteness of the Criss-cross Method. European
Journal of Operations Research 52, 119–124 (1991)

24 I. Adler, C. Papadimitriou, and A. Rubinstein

13. Goldberg, P.W., Papadimitriou, C.H., Savani, R.: The Complexity of the Homotopy
Method, Equilibrium Selection, and Lemke-Howson Solutions. ACM Transactions
on Economics and Computation 1(2), Article 9 (2013)

14. Goldfarb, D., Reid, J.K.: A Practical Steepest-Edge Simplex Algorithm. Mathe-
matical Programming 12, 361–371 (1977)

15. Jeroslow, R.G.: The Simplex Algorithm with the Pivot Rule of Maximizing Crite-
rion Improvement. Discrete Mathematics 4, 367–377 (1973)

16. Kalai, G.: A Subexponential Randomized Simplex Algorithm. In: ACM 24th Sym-
posium on Theory of Computing, pp. 475–482 (1992)

17. Kalai, G., Kleitman, D.: Quasi-polynomial Bounds for the Diameter of Graphs and
Polyhedra. Bull. Amer. Math. Soc. 26, 315–316 (1992)

18. Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press, New York (1972)

19. Karmarkar, N.K.: A New Polynomial-time Algorithm for Linear Programming.
Combinatorica 4, 373–395 (1984)

20. Khachian, R.M.: A Polynomial Algorithm in Linear Programming. Doklady Akad.
Nauk SSSR 244(5), 1093–1096; Translated in Soviet Math. Doklady, 20, 191–194
(1979)

21. Klee, V., Minty, G.J.: How Good is the Simplex Algorithm? In: Shisha, O. (ed.)
Inequalities III, pp. 159–175. Academic Press, New York (1972)

22. Lemke, C.E., Howson, J.T.: Equilibrium points of bimatrix games. SIAM Journal
on Applied Mathematics 12(2), 413–423 (1996)

23. Matousek, J., Sharir, M., Welzl, E.: A Subexponential Bound for Linear program-
ming. Algorithmica 16(4-5), 498–516 (1996)

24. Murty, K.G.: Computational Complexity of Parametric Linear Programming.
Mathematical Programming 19, 213–219 (1980)

25. Papadimitriou, C.: Computational Complexity. Addison Wesley (1994)
26. Ross, C.: An Exponential Example for Terlaky’s Pivoting Rule for the Criss-cross

Simplex Method. Mathematical Programming 46, 78–94 (1990)
27. Santos, F.: A Counterexample to the Hirsch Conjecture. Annals of Mathemat-

ics 176(1), 383–412 (2013)
28. Smale, S.: On the Average Number of Steps of the Simplex Method of Linear

Programming. Mathematical Programming 27, 241–267 (1983)
29. Spielman, D.A., Teng, S.-H.: Smoothed Analysis of Algorithms: Why the Simplex

Algorithm Usually Takes Polynomial Time. Journal of the ACM 51(3), 385–463
(2004)

30. Tardos, E.: A Strongly Polynomial Algorithm to Solve Combinatorial Linear Pro-
grams. Operations Research 34, 250–256 (1986)

31. Savani, R., von Stengel, B.: Hard to Solve Bimatrix Games. Econometrica 74(2),
397–429 (2006)

32. Terlaky, T.: A Convergent Criss-cross Method. Optimization 16, 683–690 (1990)
33. Todd, M.J.: Polynomial Expected Behvior of Pivoting Algorithm for Linear Com-

plementarity and Linear Programming Problems. Mathematical Programming 35,
173–192 (1986)

34. Ye, Y.: The Simplex and Policy-Iteration Methods Are Strongly Polynomial for the
Markov Decision Problem with a Fixed Discount Rate. Mathematics of Operations
Research 36(4), 593–603 (2011)

35. Zionts, S.: The Criss-cross Method for Solving Linear Programming Problems.
Management Science 15, 426–445 (1979)

	On Simplex Pivoting Rulesand Complexity Theory
	1 Introduction
	2 Definitions
	3 An Intractable Pivoting Rule
	4 A Tractable Pivoting Rule
	5 Randomized Pivoting Rules
	6 Discussion
	References

