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We extend Clarkson's randomized algorithm for linear programming to a general scheme for solving 
convex optimization problems. The scheme can be used to speed up existing algorithms on problems 
which have many more constraints than variables. In particular, we give a randomized algorithm for 
solving convex quadratic and linear programs, which uses that scheme together with a variant of 
Karmarkar's interior point method. For problems with n constraints, d variables, and input length L, if 
n = O(d2), the expected total number of major Karmarkar's iterations is O(d2(log n)L), compared to 
the best known deterministic bound of O(~/~ L). We also present several other results which follow from 
the general scheme. 
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I. Introduction 

This paper deals with the convex programming optimization problem, that is, 
minimizing a convex function subject to a set of convex inequality constraints. Given 
an algorithm which solves such problems (or an algorithm for solving problems 
which are special cases of the convex programming problem), we show how to 
speed up the algorithm via randomization, when the number of constraints n is 
much larger than the number of variables d. 

The convex programming problem has been the subject of numerous investigations 
(see e.g. [ 13, 15, 4]. Special cases of  the problem include the important  problems 

of linear programming, convex quadratic programming and separable convex pro- 
gramming, all of  which have been intensively studied (see, e.g. [8, 14, 12] and the 
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references thereof). A major direction of investigation has been to obtain faster 
algorithms for the linear programming problem. 

The novel algorithm introduced by Karmarkar [6] has been the origin of a plethora 
of interior-point algorithms for linear and convex quadratic programming problems, 
some of which have been shown to perform well in practice, as well as to have low 
polynomial complexity (see e.g. [9, 10]). Among these interior-point methods, 
in those with the best complexity the number of major iterations is proved to be 
O(,fn L), where each major iteration involves the inversion of a matrix. (Here L 
represents the binary input length, or, alternatively, the binary length of the largest 
subdeterminant in the constraints matrix.) A central theoretical challenge (with 
potential practical implications) is therefore to lower the number of major iterations 
as well as the overall complexity in such algorithms. One of our results substantially 
reduces the expected number of major iterations, when d = O(nl/4/logl/2 n). 

Our paper makes intensive use of the approach and techniques which were recently 
introduced by Clarkson [2] (see also [3]). Clarkson has shown how to speed-up 
the simplex method (or any vertex enumeration method) for linear programming 
via randomization, when d is small and n~ce .  Specifically, he has devised a 
randomized algorithm for solving linear programs in an expected time complexity of 

O(d2n) + log n O(d)  d/2+o(1)+ O(d 3 x/n log n) 

operations, when n ~ ~.  In this paper we extend his techniques, to give a general 
randomized scheme for speeding up the solution of convex optimization problems. 

The scheme presented here is a "Las Vegas" scheme, i.e., the randomization is 
introduced by random choices within the algorithm. No probabilistic assumptions 
on the input distribution are required, and the results give the expected complexity 
for any given input. The scheme is based on randomly selecting relatively small 
subsets of the constraints, and solving the corresponding relaxed problems. Informa- 
tion from the solution of the subproblems is then used to update the probabilities 
in subsequent random choices, until eventually the optimal solution to the original 
problem is obtained. The small subproblems may be solved using any known 
optimization algorithm. 

By using a variant of Karmarkar's interior point method [6] to solve the small 
subproblems, we obtain an algorithm with average number of major iterations lower 
than the best known bound for d = O(nl/4/log~/2 n). In particular, we show that an 
optimum solution for convex quadratic problems with linear constraints can be 
obtained in no more than 

O(d2(log n)L) 

iterations on the average, compared to the best known deterministic bound of 
O(~/-n L) iterations. Moreover, the expected total number of arithmetic operations 
required to solve such problems is shown to be O(d log n(nd + d6L)). For separable 
convex quadratic programs and linear programs, we get an optimal solution in 
O(d log n(nd + d4L)) operations on the average. 
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The paper is organized as follows: Section 2 introduces the problem and provides 

the combinatorial basis to the analysis. Section 3 describes the general randomized 

scheme in a generic form, together with a proof  of the time complexity in terms of 
complexity of subroutines for solving simpler subproblems. Sections 2 and 3 follow 
closely the arguments and constructions as presented in Clarkson [2], generalized 
appropriately for the convex programming problem. Section 4 contains concrete 
complexity results for convex quadratic and linear programs, and discusses the 
amount  of  speedup obtained by applying the scheme to Karmarkar's algorithm and 
to the ellipsoid algorithm. Section 5 contains some concluding remarks. 

2. The problem and some preliminary results 

We shall deal with the following optimization problem: 

(P) minimize f ( x )  

subject to gg( x ) <~ O, i= 1 , . . . ,  n, 

where x c R a, f ( x )  and g l ( x ) , . . . ,  gn(x) are convex functions. 

Let N = { 1 , . . . ,  n}. For Q c N, go(x)<~ 0 will denote the corresponding subset 
of the inequalities. P(Q) will be the following problem: 

(P(Q))  minimize f ( x )  

subject to go(x)<~O. 

Throughout  the paper, we shall refer to single constraints and to sets of constraints 
by their indices. E.g., "constraint i" is short for "the ith constraint", and "the set 
of constraints Q" will be used instead of "the set of constraints with index set Q". 
Also, " c "  denotes weak containment. 

The randomized scheme which will be described in Section 3 requires random 
sampling of subsets of constraints, where the probabilities of single constraints are 
unequal. This process is essentially equivalent to random sampling with equal 
probabilities from a larger sample space, in which each of the original constraints 
may formally appear more than once. We define the following notation to handle 
multiple appearance of identical constraints: Let L={1 ,  2 , . . . ,  1} be the set of 
original constraints, which are distinct. For i =  1, 2 , . . . ,  l, ]Vie N is the set of 

identical constraints all of  which correspond to the ith original constraint. Hence 
N1, N 2 , . . . ,  N~ form a partition of N. Given Q c N define for i c L, Q~ = N, c~ Q. 
Denote the unique optimal solution of P(Q) by x(Q).  For every subproblem P(Q) 
which has a unique optimal solution, we define a partition of the constraints in N 
into three sets, Vo, I o and To, by assigning each constraint j = 1 , . . . ,  n to one of 
the sets, as follows: 

if g~(x(Q))>O then j ~  VQ, (1) 

if g j (x (Q))<O then j ~ I  O. (2) 
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I f  gj(x(Q))=0, let j ~  N~; if Qi¢~3 define /x =/x(i ,  Q ) = m a x { j l j c  Qg}. If  Q¢=tl 
define/x = 0. Then j is assigned as follows: 

if gj(x(Q))=O and j > / x  then j c  Vo, 

if gj(x(Q))=O and j = / x  then j ~  TQ, 

if gj(x(Q))=O and j < / x  then jClQ. 

(3a) 

(3b) 

Oc) 
In other words: when all constraints are distinct, VQ, TQ and I o are the sets of 
constraints which are violated, tight or satisfied as a strict inequality, respectively, 

at the opt imum of the subproblem. When there are several identical constraints 

which are satisfied as equality, out of  each group Ni which is satisfied as equality, 

only that constraint which is in Q and has the largest index is called "tight", and 

we define the other constraints in Ni with smaller or larger index to be "strictly 
satisfied" or "violated",  respectively. Throughout the paper, when we say that a 
constraint is tight, strictly satisfied or violated, we are using these terms in the sense 

defined above. Define 

M = {Q c N [ P ( Q )  has an optimal solution} 

The cardinality of  a set Q will be denoted by IQ[. We make the following 

assumptions: 

(A0) N 6 M. 

(A1) For all Q c M, 
by x(Q). 

(A2) For all Q c M, 

(A3) For all Q ~ M, 

P(Q) has a unique optimal solution, which will be denoted 

Irol-<d. 
TQC Q. 

Proposition 2.1. F = {Q[ Q ~ M and TQ = Q} .  

Proof. Clearly {QI M and TQ = Q } c  F. To prove containment in the other 
direction, we shall show that for all Q' c F it holds that Q' ~ M and TQ, = Q'. Fix 

The assumptions are made in order to avoid discussing infeasible, degenerate or 
unbounded problems. We shall show later how to satisfy these assumptions for 
some concrete types of  problems. In particular, when the function f is linear or 

convex quadratic, the functions gi are all linear, the matrix of the constraints has 

full rank, and the primal and dual problems are feasible and nondegenerate,  then 

all the assumptions are satisfied. Define 

F={TQIQCM}.  

In order to prove the main theorem of this section, we shall need several proposi- 
tions. The first one implies that for every problem which has an opt imum, all the 
constraints which are tight at the opt imum are tight also at the opt imum of the 
subproblem which consists of  these constraints only: 
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Q'~ F, and let Q~ M be such that Q'= T O. Suppose we show t h a t f ( ~ ) ~ f ( x ( Q ) )  

for every ff which is feasible for P(Q'). Then P(Q') is feasible and bounded, i.e., 
Q'~ M and therefore x(Q') exists by assumption (A1). But f(x(Q'))  <-f(x(Q))  since 
Q ' c  Q. So f(x(Q')) =f(x(Q)) ,  hence x(Q) and x(Q') are both optimal for P(Q'), 
and again by assumption (A1) x(Q' )=x(Q) ,  which implies To,= T o = Q'. 

It remains to show that f(~)~>f(x(Q)) for every ~ which is feasible for P(Q'). 
Assume to the contrary that there exists a point 2 c ~d satisfying gj(ff)~< 0 for all 
j ~ Q', and f()~) < f ( x ( Q ) ) .  Clearly 2 # x(Q).  Define x~ = (1 - h)x(Q) + h)7. Let j c 
Q--TQ. 

(i) If gj(x(Q))<0, by convexity of gj we have gj(xx)<~0 for sufficiently small 
h > 0 .  

(ii) If gj(x(Q))= 0, let j z Q~. (By assumption (A3) mi ~ T o and j > m~.) Then by 
definition (3b) there exists k ~ T o such that k • Qi, since otherwise j would have 
been included in T o. But gk(~)~< 0 by our assumption, since k c To, hence also 
gj(~) ~< O. Using again the convexity of gj we get gj(x~) <~ (1 - h)gj(x(Q)) + hgj(~) <- 0 

for all h > O. 
We conclude that for sufficiently small positive h, gj(xx)<~ 0 for every j c Q -  T o. 

Hence xx is fieasible for P(Q), since by the assumption that go,(~)<~O and the 
convexity, also gj(xx) <- 0 for everyj 6 T o. By the convexity o f f  since f(97) <f(x(Q)) ,  
for sufficiently small positive h , f ( x A ) < f ( x ( Q ) ) ,  contradicting the optimality of 
x(Q)  for P(Q). Hence f ( 2 )>~ f (x (Q) )  for every 9~ which is feasible for P(Q'), and 
the proof is complete. [] 

Since by the above T o uniquely determines the optimal solution of P(Q), we 
shall call it the optimality set for P(Q). Hence the proposition establishes that the 
collection of all optimality sets of subproblems of (P) identifies with the collection 
of all optimality sets for the (substantially fewer) subproblems in which all constraints 
are tight at the', optimum. 

The following proposition claims that an optimal solution for a subproblem P' 
solves any problem containing P' for which that solution is feasible. 

Proposition 2.2. For all Q c N, if  Q ' c  Q, Q' 6 M and Q r~ Vo, = ~) , then x( Q') is 

optimal for P(Q). 

Proof. By assumption (A0) P(Q) is feasible. Since Q ' c  Q and Q'~ M, P(Q) has a 
bounded solution. Hence Q ~ M, i.e., x(Q) exists. Q ' c  Q, hence f ( x ( Q ' ) )  <-f(x(Q)).  
But Qc~ Vo,=O implies that x(Q')  satisfies all the constraints in Q, so x(Q')  is 
optimal for P(Q). [] 

The following proposition implies that if the optimal solution with respect to a 
subproblem Q 'c  Q violates some constraints of Q, at least one of these constraints 
should be in the optimality set of P(Q): 
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Proposition 2.3. Let Q c N, Q' c M, Q' ~ Q and Q c~ V o, # O. Then T o ~ VQ, ~ 9. 

Proof. The same argument as above shows that x(Q)  exists. Distinguish two cases: 
(i) If x(Q)  = x ( Q ' )  then for all j ~  Q, gj(x(Q'))<~o. I.e., no constraint j in Q 

satisfies gj(x(Q') )> 0, and all violated constraints must be of type (3a). Take some 

j c Q c~ Vo, , where j  c Qi. T h e n j  is a violated constraint of type (3a), i.e., g~(x(Q')) = 
0, and j > max{k I k ~ QI}- By (3b), the constraint with maximum index in Qi is tight, 
namely k = max{j IJ c Qi} ~ To. But since k c Vo,, we conclude that k c V o, n T o. 

(ii) If  x ( Q ) c x ( Q ' )  then f ( x ( Q ' ) ) < f ( x ( Q ) ) ,  since otherwise the two distinct 
points x(Q)  and x(Q')  would have been optimal for P(Q'),  in contradiction to 
assumption (A1). Define xA = ( 1 -  A)x (Q)+  Ax(Q'). Assume that T o c~ V o, = 0, i.e., 
all the constraints out of Q which are violated at x(Q')  are not tight at x(Q).  Thus, 
for a sufficiently small A > 0, by the convexity of gi and f we have go(xA)<~ 0 and 
f ( xx )  < f ( x ( Q ) ) ,  contradicting the optimality of x(Q)  for P(Q), which completes 
the proof. [] 

Define now A b = { O c F l O ~  O and IOn vol =i}, that is, A S is the set of all 
subset of Q in F whose optimal solutions are violated by exactly i constraints from 
Q. The following proposition states that every subproblem has a unique optimality 

subset: 

Proposition 2.4. For every Q ~ M, IA l: 1 

Proof. By Proposition 2.1, there exists at least one optimality set for Q, namely T o. 
Suppose both Qa a n d  Q2 are optimality sets for Q. Then by Proposition 2.2 and 
assumption (A1) x(Q1)=x(Q2). But Q1, Q2c F so TO,= Q1 and To~= Q2 which 

implies Q1=Q2. [] 

The following proposition states that for every subproblem, the number of distinct 
optimality subsets contained in it which violate exactly one of its constraints is at 

most d: 

Proposition 2.5. For every Q ~ M, IA~I ~ d. 

Proof. Let {QI, Q2 . . . .  , Qk} = A~ and let ai be the index of the unique constraint 
of Q violated by x(Qi) ,  i.e. {a~}=Qc~ Vow. If a i =  c9, i ~ j ,  then Qi and QJ are 
optimality sets for Q-{a~},  so by Proposition 2.4, Q~= QJ. Thus a~, a 2 , . . . ,  ak are 
all distinct. Moreover, by Proposition 2.3, the set {a~, a 2 , . . . ,  ak} ~ TO. So ITol>~ k. 
Since by assumption (A2) ]To]<-d, the result follows. [] 

We can now prove the main theorem of this section. We assume that a set S ~ M 
is fixed, and out of the remaining constraints, a set R of size r is chosen randomly, 

0361'"03086 



L Adler, R. Shamir / Randomized scheme for convex programs 45 

such that all sets of size r out of N - S  have equal probability to be chosen. The 
theorem gives an upper bound on the expected number of constraints out of N 
which are violated by the optimal solution to P(R u S): 

Theorem 2.6. Given S c M, assume that a set R c N -  S o f  r constraints is randomly 

chosen. Denote  Q = R u S, n ' =  n - I S  I. Then 

n ' - r + l  
E(IVQI)<- r _ ~  d. 

Proof. For an3, Q ~ M, denote by v ( Q )  the number of constraints in N violated by 
the optimal so]ution corresponding to P(Q),  i.e., v (Q)=  I vol Our sample space is 
G={Q[ Q = S v ,  R,  R c N - S ,  [RI =r}. Since S ~ M ,  by assumption (A0) every Q a G  

satisfies Q a M~ There are (';') equiprobable ways to choose Q, and for each Q we 
count the number of constraints violated by the optimum x(Q). Hence 

E(v(Q))  =~,O~G v(Q) 

(;) 
By Proposition 2.1, rather than counting over G, we can count over F. But then for 
every member 0 of F, we should multiply v(0)  by the number of sets Qe  G for 
which T o = Q. In other words, 

v(0). [{Oc GI To = 0}I 

(;) 
Fix 0 a  F and denote Qs = O n  S, 0N-s  = Q - Q s ,  and i o =  10N-s[. We wish to 

count the number of sets Q c G which satisfy TQ = Q. Every such Q should contain 
the set ON s, and the remaining r -  i 0 constraints should be selected out of I O -  S, 

i.e., out of n ' - i  O -  v ( Q )  constraints. (Note that x(Q ) violates no constraints from 
S, since x ( Q )  ]is optimal for Q, which alway contains S). Hence, 

\ r - t  0 / 
m (;) 

O~F r-- io ] 

r - - iQ--1  ] 

(;) 
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Since v(Q)/> 0 and i0<~ [O]<~ d (by assumption (A2)) we have 

< ~ ( n ' - r + l ) \  r---~ 

For (~ 6 F, 

iv-.(0)) 
\ r - i o - 1  ] 

~,(o)(n'-io-~'(O)~ 
ZO~v \ r _ i o _ l  ] 

(:) 

is precisely the number of distinct Q ~ G for which O belongs to A ~. This follows 
since for fixed (~, in order for x(Q)  to violate exactly one constraint of Q, Q should 

contain the set QN-s, one violated constraint out of the set V 0 (whose size is v((~)) 
and the remaining r -  i 0 - 1 constraints should be selected out of  the non-violated 
constraints. Summation over all t~ ~ F will therefore yield at most Y,o~c IAo] • Thus, 

E(IvQI)~(n--r_+I) Z o ~  IZ~[ ( n ' - r +  

where the last inequality follows from Proposition 2.5. [] 

3. The randomized scheme 

We now describe a randomized scheme for solving convex optimization problems. 
It is based on Clarkson's scheme for linear programming [2]. Since the scheme is 

designed to speed up solution of problems with large n/d ratio, we assume 
throughout the rest of the paper that n = $2(d2). We solve a sequence of randomly 
chosen subproblems, each with a relatively small number of constraints. The random 
choice is done according to integer weights attached to the constraints. The weights 
are initially all equal, and are modified during the execution of the algorithm. In 
each iteration, the relative weight of  each constraint reflects the posterior probability 
that we attach at that stage to the event that this constraint is in the optimality set 
for the original problem. 

Each subproblem is solved by standard techniques, and the set of constraints 
violated at its optimum point are identified. Theorem 2.6 guarantees that with high 
probability, the number of violated constraints is small. By Proposition 2.3, at least 
one of these violated constraints is in the optimality set of the original problem. If  
indeed the number of  violated constraints is small, the algorithm increases the 
weights of these constraints before the next iteration. When the next subproblem is 
randomly chosen, the probability of including in it more constraints from the 
optimally set is thus increased, until eventually it includes all the optimally set 
and the process terminates. 
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The formal description of the algorithm now follows. The algorithm uses a generic 

subroutine called SOLVE to solve the small subproblems. The input to SOLVE is 

a subproblem P(Q),  and it outputs the optimal solution x(Q). Given the problem 

(P), we assume that a set S c N  is known such that IS l<~d+l  and P(S) has a 

bounded  solution. The set S will participate in every subproblem solved by the 

algorithm, thereby guaranteeing that for every R c N -  S, P(R w S) has a bounded 
solution. We shall show how to achieve that situation later, for particular types of  
problems. The integer weight attached to constraint i is denoted by w~. Also, for a 

set Q of  constraints, W ( Q ) =  Yq~o wi will denote its total weight. 

Algorithm RANDOPT. 
Input: Problem (P) in d variables, with a set N of  n constraints. 

Output: An optimal solution x ( N )  for the problem. 

Step 1. 
Step 2. 

Step 3. 
Step 4. 
Step 5. 
Step 6. 

Set o~d~-4d2+d; [3d~l/(2d);  for i = 1 , . . . ,  n set wi<- 1. 
Choose R c N -  S with IRI = o / d  at random, according to the weights wi. 

Set Q ~ R u S .  
Use SOLVE on P(Q) to obtain its optimal solution, x(Q).  
Find V = V o. 
I f  V =  0 then output x(Q) and terminate. 

Else if W(V)<~fld • W ( N )  then for all i c  V set w~-2w~. Go to Step 2. 

The random choice in Step 2 is done as follows: r constraints are chosen 

sequentially from the set of  original constraints N - S .  Initially, constraint i has 

relative probabili ty w i / W ( N )  to be chosen, for all i. If  constraint j has been chosen, 

then we set wj ~ w j -  1 and repeat the process. Note that the same constraint may 
be chosen several times. 

We say that a new iteration has started whenever the algorithm executes step 2. 
Hence, the number  of  iterations performed is equal to the number  of  executions of  

SOLVE. We say that an iteration is successful if the weights are updated in Step 6, 

namely, if  the total weight of  the set of  violated constraints has not exceeded the limit. 

Theorem 3.1. 7he expected number of iterations required by the algorithm is O( d log n). 

Proof. We first show that the expected number  of  iterations between successful 
iterations is at most two. For the sake of the proof, we use the following equivalent 
representation of the random choice: We select at random a subset of  size r from 
the multiset M = M(w)  in which for each i c N -  S, constraint i appears  wi times. 
That is, 

M(w)  ={c(i , j )Ic( i , j )  = i , j= 1 , . . . ,  w,, i= 1 , . . . ,  n}. 

All subsets of  size r in M are equiprobable. Clearly, [MI = W(N) .  Denote by ~ c  M 
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the multiset of  constraints which are violated at x(Q).  Note that since f" is a multiset, 
violation here is in the sense defined in Section 2, so in particular, if gc(;d~(x(Q)) = 0 

and j >  max{k I e(i, k) ~ Q} then c(i, j)  c V o is a violated constraint of  type (3a), but 
it does not contribute to the doubling of weights in Step 6 of  the algorithm. In other 

words, W(V) ~< 119[. By Theorem 2.6, E(191) is not more than d ( W ( N )  - r+ l ) / ( r  - 
d). Taking aa = 4 d 2 + d  and rid = 1/(2d),  we get 

E (  W ( V ) )  ~ E(I 91) ~ ( W ( N )  - 4 d  2 - d q- 1)/(4d) < W ( N ) / ( 4 d )  

= ½~dW(N). 

By Markov's  inequality, the probability that W(V)>~f idW(N)  is thus at most ½, 

hence it takes on the average no more than two iterations until the condition in 
Step 6 is satisfied. Consequently, the expected total number  of  iterations is at most 
twice the expected total number  of  successful iterations. 

Let Z = T N -  S and d ' =  IZ[. By assumption (A2), [T u[ <~ d, so d'<~ d. We assume 

that d ' > 0 ,  since if d ' = 0  then TN C S, and then the first iteration immediately 

provides the optimal solution. To bound the expected number  of  successful iterations 

we use again the multiset interpretation: I f  the algorithm generates V # 0 ,  then 

clearly f ' #  0. Moreover, if V #  0 Proposition 2.3 implies that V contains at least 
one member  of  Z. Hence in each successful iteration, the weight of  at least one 
constraint of  Z is doubled. This implies that W ( Z )  is at least doubled after every 

d '  successful iterations. Initially W ( Z ) =  d', so after kd' successful iterations 

W ( Z )  >1 d'2 k. Also, initially W ( N )  = n, and Step 6 in the algorithm guarantees that 

W ( N )  increases by no more than a factor of  1 + fie upon each successful iteration. 
Hence after kd' successful iterations, W(N)<-n(l+f ia)kd '<~ne t3y'. W ( Z )  
increases much faster than W ( N ) ,  and the algorithm should terminate before 
W ( Z )  >~ W ( N ) .  Hence termination happens before k satisfies 

W ( Z )  >i d'2 k >~ n et3~ka'>~ W( N) ,  

i.e., if k ( ln2-f ldd')>~ln(n/d ') .  In summary,  we get that the algorithm requires 
O(d log n) iterations on the average. [] 

We can now state the complexity of  the scheme. It will be expressed in terms of  
the complexity of the subroutine for solving small problems, SOLVE, and of the 
effort required to check whether a point satisfies a constraint. For fixed d, denote 
by CSOLVE(m) the time complexity of SOLVE when solving a problem with m 
constraints. Denote by CCHECK the time complexity of an oracle which checks 
whether a point x ~ Nd satisfies a constraint of the problem. (The dependence on 

the dimension and the input size L is suppressed here; it will be discussed for some 
concrete classes in the next section). All complexity results are stated according to 
the model of  computa t ion  of uniform-cost  sequential r andom access machine [ 1 ]. 
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Theorem 3.2. The above scheme solves (P) in expected time complexity: 

49 

O(d log n[n . CCHECK+ CsoLvE(4d2 + 2d + 1 ) ] ). 

Proof. By Theorem 3.1, the expected number of iterations is O(d log n). In each 
iteration we use SOLVE on a subproblem with at most 4d2+ 2d + 1 constraints, and 

then check which of the n constraints of the original problem are violated at the 
optimum point. The complexity of the random choice of R can be performed in 
O(n) steps (see [2] and the references thereof), so it is dominated by the latter 
test. [] 

4. Complexity results for specific problem classes 

In this section we apply the scheme to several problems, including linear and convex 
quadratic programming. The algorithms we shall use as subroutines in the scheme 

have complexity bounds which depend polynomially on the size of the input. 
Therefore, the resulting complexities will be expressed as functions of n, d and the 
binary input length L. 

Theorem 4.1. Given a subroutine for solving a convex programming problem with d 
variables, n constraints and input length L in time T(n, d, L), and another subroutine 

for checking if  a constraint is satisfied by a given point of  complexity CCHECK, the 
expected time complexity of  algorithm R A N D O P T  is 

O( d log n[ n . CCHECK+ T( 4d2 + 2d + l, d, L)]). 

Proof. Follows immediately from Theorem 3.2. [] 

Note that the theorem applies only to those convex programming problems for 
which the input length is well defined. For general convex programming problems, 
this its not always the case. 

Corollary 4.2. A problem with convex quadratic objective and linear constraints is 
solvable in expected time O(d log n(dn + d6L)). 

Proof. For convex quadratic programming problems, an algorithm based on 
Karmarkar's interior path method gives a solution in O(n3L) time (see, e.g., [10]). 
The time requi[red to check whether a point satisfies a linear constraint is obviously 
O(d) .  Hence the result follows from Theorem 4.1. [] 
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Corollary 4.3. A problem with separable convex quadratic objective and linear con- 
straints is solvable in expected time O( d log n(nd + d4L)). 

Proof. These problems are solvable by the same algorithm as in the previous case, 
in time O((nd2+n3/2d)L) (see [10]). [] 

Corollary 4.4. The linear programming problem is solvable in expected time 

O(d tog n(nd + d4L)). 

Proof. This is a special case of  Corollary 4.3. [] 

Theorem 4.5. Using interior path following algorithms, convex quadratic program- 
ming problems and linear programming problems can be solved within 0 ( d 2 (log n ) L)  

major iterations on the average. 

Proof. In proving Theorem 3.1, we have shown that overall the scheme solves on 
the average at most O(d log n) problems each of which has at most 4 d 2 + 2 d + l  

constraints, and size at most L. Since it is possible to solve convex quadratic problems 
with n constraints in O(nl/ZL) major iterations of interior path following algorithm 
(see, e.g., [10]), the expected total number of such iterations is no more than that 

stated in the theorem. [] 

We now demonstrate the speedup (in terms of complexity) obtained by the scheme 
for two well known polynomial algorithms for the linear programming problem. 
Given an algorithm ALG for solving linear programs, denote by PALG the ratio of 
the complexity of  ALG to the expected complexity of RA N D O P T which uses ALG 
as a subroutine to solve small subproblems. By Corollary 4.4, for Karmarkar's 
interior point algorithm (using, for example, the variant studied in [10]), one gets 
PKAR = ~2(~,/n L/(d log n)) when L = O(n/d3), and P K A R  = ~(n3 /2 / (  d4 log n)) other- 

wise. For the ellipsoid algorithm [7] which requires O(nd3L) operations (see, e.g., 
[5]), PELL = g~(dL/log n) i fL  = O(n/d 4) and PELL = ~2(n/( d3 log n)) otherwise. Note 

that if L represents the size of the input, L ~> n, so only the second case applies for 
both algorithms, with a guaranteed speedup for n ~ oo and n/d sufficiently large. 

In all the above expressions L may be replaced by A, the logarithm of the largest 
absolute value of a subdeterminant of the problem data (see, e.g., [ 14]), if that value 
is known in advance. In that case p depends on the relation between zl and n. 
However, if we assume that there are no identical constraints in the input, then we 
can determine a uniform lower bound on the speedup, which is independent on A, 
by noting that n cannot increase too much without affecting A: If the largest absolute 
value of an input number in the integer data is k, then n <~ (2k+  1) a, which implies 
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log k = O ( ( l o g  n ) / d ) ,  so zi = g 2 ( ( l o g n ) / d ) .  This implies PKAR~-J"~(~/d 2) and 

PELL = O(1). Hence even with A as small as possible, a speedup is guaranteed for 
the interior point algorithm when n = J ~ ( d 4 ) ,  and for the ellipsoid the randomization 

is always competitive. Note that for fixed d and n ~ ~ all the above results become 

even stronger. 
In all the cases discussed in Theorems 4.2-4.5 above, the constraints are linear 

and the objective function is linear or convex quadratic. Such problems can be 
presented as linear complementarity problems, i.e., find z t> 0 and w >/0 such that 
w - M z  = q and z T w  = 0, where M is an n × n matrix and q is an n-vector (for the 

reductions see, e.g., [ 11 ]). Note that feasibility of the linear complementarity problem 

guarantees botlh boundedness and feasibility of the original problems. In these cases, 
in order to satisfy the assumptions of Section 2, the following can be done: One 
can construct an equivalent linear complementarity problem with additional con- 
straint set S and additional variables, which is feasible and in which n, d and L 
were only slightly increased without affecting the complexity (see, e.g., [10] for 
details). This guarantees property (A0). By including the set S in all solved subprob- 
lems, we guarantee their boundedness which is required in (A1). Furthermore, it is 
possible to perturb q so that every basic feasible solution of the above problem is 
non-degenerate. This will satisfy the rest of the assumptions. The perturbation of q 
can be done formally without affecting L, as is done, for example, in [11]. Since 
all our assumptions can be satisfied for linear complementarity problems with 
positive semi-definite matrix M, the randomized scheme can be applied to any 
algorithm which solves such problems. For other convex problems, the existence 

of a solution subroutine as well as the validity of assumptions (A0)-(A3) should 
be established in order to guarantee the proved convergence bounds of the random- 

ized scheme. 

5. Concluding remarks 

1. There is a certain resemblance between the randomized algorithm and the dual 
presentation of "partial pricing" method for solving linear programs. In both cases, 
optimality of a subproblem is reached before considering the rest of the constraints. 
For the general convex programming case, the randomized scheme fits into the 
framework of general relaxation techniques. Since those schemes are commonly 
used in practice, the randomized scheme might be of interest for practical 
implementation. 

2. Algorithms with complexities which are independent of the sizes of the input 
numbers (e.g., the simplex method or strongly polynomial algorithms) may also be 
accelerated by the above scheme. For linear programs, Clarkson [2] described how 
to use the simplex method (or any vertex enumeration method) in SOLVE in order 
to improve the time complexity which depends on d and n only. Note that this 
case is covered by Theorem 4.1. 
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