
Mathematical Programming 61 (1993) 39-52 39
North-Holland

A randomized scheme for speeding up
algorithms for linear and convex
programming problems with high
constraints-to-variables ratio

Ilan Adler
Industrial Engineering and Operations Research Department, University of California, Berkeley, CA, USA

Ron Shamir
School of Mathematical Sciences, Sackler Faculty of Exact Sciences, Tel-Aviv University, TeI-Aviv, Israel

Received 12 November 1989
Revised manuscript received 26 May 1992

We extend Clarkson's randomized algorithm for linear programming to a general scheme for solving
convex optimization problems. The scheme can be used to speed up existing algorithms on problems
which have many more constraints than variables. In particular, we give a randomized algorithm for
solving convex quadratic and linear programs, which uses that scheme together with a variant of
Karmarkar's interior point method. For problems with n constraints, d variables, and input length L, if
n = O(d2), the expected total number of major Karmarkar's iterations is O(d2(log n)L), compared to
the best known deterministic bound of O(~/~ L). We also present several other results which follow from
the general scheme.

Key words: Linear !programming, quadratic programming, convex programming, randomized algorithms,
fixed dimension optimization problems, complexity.

I. Introduction

This paper deals with the convex programming optimization problem, that is,
minimizing a convex function subject to a set of convex inequality constraints. Given
an algorithm which solves such problems (or an algorithm for solving problems
which are special cases of the convex programming problem), we show how to
speed up the algorithm via randomization, when the number of constraints n is
much larger than the number of variables d.

The convex programming problem has been the subject of numerous investigations
(see e.g. [13, 15, 4]. Special cases of the problem include the important problems

of linear programming, convex quadratic programming and separable convex pro-
gramming, all of which have been intensively studied (see, e.g. [8, 14, 12] and the

Correspondence to: Dr. Ron Shamir, Department of Computer Science, Raymond and Beverly Sackler
Faculty of Exact Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel.

40 L Adler, R. Shamir / Randomized scheme for convex programs

references thereof). A major direction of investigation has been to obtain faster
algorithms for the linear programming problem.

The novel algorithm introduced by Karmarkar [6] has been the origin of a plethora
of interior-point algorithms for linear and convex quadratic programming problems,
some of which have been shown to perform well in practice, as well as to have low
polynomial complexity (see e.g. [9, 10]). Among these interior-point methods,
in those with the best complexity the number of major iterations is proved to be
O(,fn L), where each major iteration involves the inversion of a matrix. (Here L
represents the binary input length, or, alternatively, the binary length of the largest
subdeterminant in the constraints matrix.) A central theoretical challenge (with
potential practical implications) is therefore to lower the number of major iterations
as well as the overall complexity in such algorithms. One of our results substantially
reduces the expected number of major iterations, when d = O(nl/4/logl/2 n).

Our paper makes intensive use of the approach and techniques which were recently
introduced by Clarkson [2] (see also [3]). Clarkson has shown how to speed-up
the simplex method (or any vertex enumeration method) for linear programming
via randomization, when d is small and n~ce . Specifically, he has devised a
randomized algorithm for solving linear programs in an expected time complexity of

O(d2n) + log n O(d) d/2+o(1)+ O(d 3 x/n log n)

operations, when n ~ ~. In this paper we extend his techniques, to give a general
randomized scheme for speeding up the solution of convex optimization problems.

The scheme presented here is a "Las Vegas" scheme, i.e., the randomization is
introduced by random choices within the algorithm. No probabilistic assumptions
on the input distribution are required, and the results give the expected complexity
for any given input. The scheme is based on randomly selecting relatively small
subsets of the constraints, and solving the corresponding relaxed problems. Informa-
tion from the solution of the subproblems is then used to update the probabilities
in subsequent random choices, until eventually the optimal solution to the original
problem is obtained. The small subproblems may be solved using any known
optimization algorithm.

By using a variant of Karmarkar's interior point method [6] to solve the small
subproblems, we obtain an algorithm with average number of major iterations lower
than the best known bound for d = O(nl/4/log~/2 n). In particular, we show that an
optimum solution for convex quadratic problems with linear constraints can be
obtained in no more than

O(d2(log n)L)

iterations on the average, compared to the best known deterministic bound of
O(~/-n L) iterations. Moreover, the expected total number of arithmetic operations
required to solve such problems is shown to be O(d log n(nd + d6L)). For separable
convex quadratic programs and linear programs, we get an optimal solution in
O(d log n(nd + d4L)) operations on the average.

L Adler, R. Shamir / Randomized scheme for convex programs 41

The paper is organized as follows: Section 2 introduces the problem and provides

the combinatorial basis to the analysis. Section 3 describes the general randomized

scheme in a generic form, together with a proof of the time complexity in terms of
complexity of subroutines for solving simpler subproblems. Sections 2 and 3 follow
closely the arguments and constructions as presented in Clarkson [2], generalized
appropriately for the convex programming problem. Section 4 contains concrete
complexity results for convex quadratic and linear programs, and discusses the
amount of speedup obtained by applying the scheme to Karmarkar's algorithm and
to the ellipsoid algorithm. Section 5 contains some concluding remarks.

2. The problem and some preliminary results

We shall deal with the following optimization problem:

(P) minimize f (x)

subject to gg(x) <~ O, i= 1 , . . . , n,

where x c R a, f (x) and g l (x) , . . . , gn(x) are convex functions.

Let N = { 1 , . . . , n}. For Q c N, go(x)<~ 0 will denote the corresponding subset
of the inequalities. P(Q) will be the following problem:

(P(Q)) minimize f (x)

subject to go(x)<~O.

Throughout the paper, we shall refer to single constraints and to sets of constraints
by their indices. E.g., "constraint i" is short for "the ith constraint", and "the set
of constraints Q" will be used instead of "the set of constraints with index set Q".
Also, " c " denotes weak containment.

The randomized scheme which will be described in Section 3 requires random
sampling of subsets of constraints, where the probabilities of single constraints are
unequal. This process is essentially equivalent to random sampling with equal
probabilities from a larger sample space, in which each of the original constraints
may formally appear more than once. We define the following notation to handle
multiple appearance of identical constraints: Let L={1 , 2 , . . . , 1} be the set of
original constraints, which are distinct. For i = 1, 2 , . . . , l,]Vie N is the set of

identical constraints all of which correspond to the ith original constraint. Hence
N1, N 2 , . . . , N~ form a partition of N. Given Q c N define for i c L, Q~ = N, c~ Q.
Denote the unique optimal solution of P(Q) by x(Q). For every subproblem P(Q)
which has a unique optimal solution, we define a partition of the constraints in N
into three sets, Vo, I o and To, by assigning each constraint j = 1 , . . . , n to one of
the sets, as follows:

if g~(x(Q))>O then j ~ VQ, (1)

if g j (x (Q))<O then j ~ I O. (2)

42 L Adler, R. Shamir / Randomized scheme for convex programs

I f gj(x(Q))=0, let j ~ N~; if Qi¢~3 define /x =/x(i , Q) = m a x { j l j c Qg}. If Q¢=tl
define/x = 0. Then j is assigned as follows:

if gj(x(Q))=O and j > / x then j c Vo,

if gj(x(Q))=O and j = / x then j ~ TQ,

if gj(x(Q))=O and j < / x then jClQ.

(3a)

(3b)

Oc)
In other words: when all constraints are distinct, VQ, TQ and I o are the sets of
constraints which are violated, tight or satisfied as a strict inequality, respectively,

at the opt imum of the subproblem. When there are several identical constraints

which are satisfied as equality, out of each group Ni which is satisfied as equality,

only that constraint which is in Q and has the largest index is called "tight", and

we define the other constraints in Ni with smaller or larger index to be "strictly
satisfied" or "violated", respectively. Throughout the paper, when we say that a
constraint is tight, strictly satisfied or violated, we are using these terms in the sense

defined above. Define

M = {Q c N [P (Q) has an optimal solution}

The cardinality of a set Q will be denoted by IQ[. We make the following

assumptions:

(A0) N 6 M.

(A1) For all Q c M,
by x(Q).

(A2) For all Q c M,

(A3) For all Q ~ M,

P(Q) has a unique optimal solution, which will be denoted

Irol-<d.
TQC Q.

Proposition 2.1. F = {Q[Q ~ M and TQ = Q} .

Proof. Clearly {QI M and TQ = Q } c F. To prove containment in the other
direction, we shall show that for all Q' c F it holds that Q' ~ M and TQ, = Q'. Fix

The assumptions are made in order to avoid discussing infeasible, degenerate or
unbounded problems. We shall show later how to satisfy these assumptions for
some concrete types of problems. In particular, when the function f is linear or

convex quadratic, the functions gi are all linear, the matrix of the constraints has

full rank, and the primal and dual problems are feasible and nondegenerate, then

all the assumptions are satisfied. Define

F={TQIQCM}.

In order to prove the main theorem of this section, we shall need several proposi-
tions. The first one implies that for every problem which has an opt imum, all the
constraints which are tight at the opt imum are tight also at the opt imum of the
subproblem which consists of these constraints only:

L Adler, R. Shamir / Randomized scheme for convex programs 43

Q'~ F, and let Q~ M be such that Q'= T O. Suppose we show t h a t f (~) ~ f (x (Q))

for every ff which is feasible for P(Q'). Then P(Q') is feasible and bounded, i.e.,
Q'~ M and therefore x(Q') exists by assumption (A1). But f(x(Q')) <-f(x(Q)) since
Q ' c Q. So f(x(Q')) =f(x(Q)) , hence x(Q) and x(Q') are both optimal for P(Q'),
and again by assumption (A1) x(Q')=x(Q) , which implies To,= T o = Q'.

It remains to show that f(~)~>f(x(Q)) for every ~ which is feasible for P(Q').
Assume to the contrary that there exists a point 2 c ~d satisfying gj(ff)~< 0 for all
j ~ Q', and f()~) < f (x (Q)) . Clearly 2 # x(Q). Define x~ = (1 - h)x(Q) + h)7. Let j c
Q--TQ.

(i) If gj(x(Q))<0, by convexity of gj we have gj(xx)<~0 for sufficiently small
h > 0 .

(ii) If gj(x(Q))= 0, let j z Q~. (By assumption (A3) mi ~ T o and j > m~.) Then by
definition (3b) there exists k ~ T o such that k • Qi, since otherwise j would have
been included in T o. But gk(~)~< 0 by our assumption, since k c To, hence also
gj(~) ~< O. Using again the convexity of gj we get gj(x~) <~ (1 - h)gj(x(Q)) + hgj(~) <- 0

for all h > O.
We conclude that for sufficiently small positive h, gj(xx)<~ 0 for every j c Q - T o.

Hence xx is fieasible for P(Q), since by the assumption that go,(~)<~O and the
convexity, also gj(xx) <- 0 for everyj 6 T o. By the convexity o f f since f(97) <f(x(Q)) ,
for sufficiently small positive h , f (x A) < f (x (Q)) , contradicting the optimality of
x(Q) for P(Q). Hence f (2)>~ f (x (Q)) for every 9~ which is feasible for P(Q'), and
the proof is complete. []

Since by the above T o uniquely determines the optimal solution of P(Q), we
shall call it the optimality set for P(Q). Hence the proposition establishes that the
collection of all optimality sets of subproblems of (P) identifies with the collection
of all optimality sets for the (substantially fewer) subproblems in which all constraints
are tight at the', optimum.

The following proposition claims that an optimal solution for a subproblem P'
solves any problem containing P' for which that solution is feasible.

Proposition 2.2. For all Q c N, if Q ' c Q, Q' 6 M and Q r~ Vo, = ~) , then x(Q') is

optimal for P(Q).

Proof. By assumption (A0) P(Q) is feasible. Since Q ' c Q and Q'~ M, P(Q) has a
bounded solution. Hence Q ~ M, i.e., x(Q) exists. Q ' c Q, hence f (x (Q ')) <-f(x(Q)).
But Qc~ Vo,=O implies that x(Q') satisfies all the constraints in Q, so x(Q') is
optimal for P(Q). []

The following proposition implies that if the optimal solution with respect to a
subproblem Q 'c Q violates some constraints of Q, at least one of these constraints
should be in the optimality set of P(Q):

44 I. Adler, R. Shamir / Randomized scheme for convex programs

Proposition 2.3. Let Q c N, Q' c M, Q' ~ Q and Q c~ V o, # O. Then T o ~ VQ, ~ 9.

Proof. The same argument as above shows that x(Q) exists. Distinguish two cases:
(i) If x(Q) = x (Q ') then for all j ~ Q, gj(x(Q'))<~o. I.e., no constraint j in Q

satisfies gj(x(Q'))> 0, and all violated constraints must be of type (3a). Take some

j c Q c~ Vo, , where j c Qi. T h e n j is a violated constraint of type (3a), i.e., g~(x(Q')) =
0, and j > max{k I k ~ QI}- By (3b), the constraint with maximum index in Qi is tight,
namely k = max{j IJ c Qi} ~ To. But since k c Vo,, we conclude that k c V o, n T o.

(ii) If x (Q) c x (Q ') then f (x (Q ')) < f (x (Q)) , since otherwise the two distinct
points x(Q) and x(Q') would have been optimal for P(Q'), in contradiction to
assumption (A1). Define xA = (1 - A)x (Q)+ Ax(Q'). Assume that T o c~ V o, = 0, i.e.,
all the constraints out of Q which are violated at x(Q') are not tight at x(Q). Thus,
for a sufficiently small A > 0, by the convexity of gi and f we have go(xA)<~ 0 and
f (xx) < f (x (Q)) , contradicting the optimality of x(Q) for P(Q), which completes
the proof. []

Define now A b = { O c F l O ~ O and IOn vol =i}, that is, A S is the set of all
subset of Q in F whose optimal solutions are violated by exactly i constraints from
Q. The following proposition states that every subproblem has a unique optimality

subset:

Proposition 2.4. For every Q ~ M, IA l: 1

Proof. By Proposition 2.1, there exists at least one optimality set for Q, namely T o.
Suppose both Qa a n d Q2 are optimality sets for Q. Then by Proposition 2.2 and
assumption (A1) x(Q1)=x(Q2). But Q1, Q2c F so TO,= Q1 and To~= Q2 which

implies Q1=Q2. []

The following proposition states that for every subproblem, the number of distinct
optimality subsets contained in it which violate exactly one of its constraints is at

most d:

Proposition 2.5. For every Q ~ M, IA~I ~ d.

Proof. Let {QI, Q2 , Qk} = A~ and let ai be the index of the unique constraint
of Q violated by x(Qi) , i.e. {a~}=Qc~ Vow. If a i = c9, i ~ j , then Qi and QJ are
optimality sets for Q-{a~}, so by Proposition 2.4, Q~= QJ. Thus a~, a 2 , . . . , ak are
all distinct. Moreover, by Proposition 2.3, the set {a~, a 2 , . . . , ak} ~ TO. So ITol>~ k.
Since by assumption (A2)]To]<-d, the result follows. []

We can now prove the main theorem of this section. We assume that a set S ~ M
is fixed, and out of the remaining constraints, a set R of size r is chosen randomly,

0361'"03086

L Adler, R. Shamir / Randomized scheme for convex programs 45

such that all sets of size r out of N - S have equal probability to be chosen. The
theorem gives an upper bound on the expected number of constraints out of N
which are violated by the optimal solution to P(R u S):

Theorem 2.6. Given S c M, assume that a set R c N - S o f r constraints is randomly

chosen. Denote Q = R u S, n ' = n - I S I. Then

n ' - r + l
E(IVQI)<- r _ ~ d.

Proof. For an3, Q ~ M, denote by v (Q) the number of constraints in N violated by
the optimal so]ution corresponding to P(Q), i.e., v (Q)= I vol Our sample space is
G={Q[Q = S v , R, R c N - S , [RI =r}. Since S ~ M , by assumption (A0) every Q a G

satisfies Q a M~ There are (';') equiprobable ways to choose Q, and for each Q we
count the number of constraints violated by the optimum x(Q). Hence

E(v(Q)) =~,O~G v(Q)

(;)
By Proposition 2.1, rather than counting over G, we can count over F. But then for
every member 0 of F, we should multiply v(0) by the number of sets Qe G for
which T o = Q. In other words,

v(0). [{Oc GI To = 0}I

(;)
Fix 0 a F and denote Qs = O n S, 0N-s = Q - Q s , and i o = 10N-s[. We wish to

count the number of sets Q c G which satisfy TQ = Q. Every such Q should contain
the set ON s, and the remaining r - i 0 constraints should be selected out of I O - S,

i.e., out of n ' - i O - v (Q) constraints. (Note that x(Q) violates no constraints from
S, since x (Q)]is optimal for Q, which alway contains S). Hence,

\ r - t 0 /
m (;)

O~F r-- io]

r - - iQ--1]

(;)

46 L Adler, R. Shamir / Randomized scheme for convex programs

Since v(Q)/> 0 and i0<~ [O]<~ d (by assumption (A2)) we have

< ~ (n ' - r + l) \ r---~

For (~ 6 F,

iv-.(0))
\ r - i o - 1]

~,(o)(n'-io-~'(O)~
ZO~v \ r _ i o _ l]

(:)

is precisely the number of distinct Q ~ G for which O belongs to A ~. This follows
since for fixed (~, in order for x(Q) to violate exactly one constraint of Q, Q should

contain the set QN-s, one violated constraint out of the set V 0 (whose size is v((~))
and the remaining r - i 0 - 1 constraints should be selected out of the non-violated
constraints. Summation over all t~ ~ F will therefore yield at most Y,o~c IAo] • Thus,

E(IvQI)~(n--r_+I) Z o ~ IZ~[(n ' - r +

where the last inequality follows from Proposition 2.5. []

3. The randomized scheme

We now describe a randomized scheme for solving convex optimization problems.
It is based on Clarkson's scheme for linear programming [2]. Since the scheme is

designed to speed up solution of problems with large n/d ratio, we assume
throughout the rest of the paper that n = $2(d2). We solve a sequence of randomly
chosen subproblems, each with a relatively small number of constraints. The random
choice is done according to integer weights attached to the constraints. The weights
are initially all equal, and are modified during the execution of the algorithm. In
each iteration, the relative weight of each constraint reflects the posterior probability
that we attach at that stage to the event that this constraint is in the optimality set
for the original problem.

Each subproblem is solved by standard techniques, and the set of constraints
violated at its optimum point are identified. Theorem 2.6 guarantees that with high
probability, the number of violated constraints is small. By Proposition 2.3, at least
one of these violated constraints is in the optimality set of the original problem. If
indeed the number of violated constraints is small, the algorithm increases the
weights of these constraints before the next iteration. When the next subproblem is
randomly chosen, the probability of including in it more constraints from the
optimally set is thus increased, until eventually it includes all the optimally set
and the process terminates.

L Adler, R. Shamir / Randomized scheme for convex programs 47

The formal description of the algorithm now follows. The algorithm uses a generic

subroutine called SOLVE to solve the small subproblems. The input to SOLVE is

a subproblem P(Q), and it outputs the optimal solution x(Q). Given the problem

(P), we assume that a set S c N is known such that IS l<~d+l and P(S) has a

bounded solution. The set S will participate in every subproblem solved by the

algorithm, thereby guaranteeing that for every R c N - S, P(R w S) has a bounded
solution. We shall show how to achieve that situation later, for particular types of
problems. The integer weight attached to constraint i is denoted by w~. Also, for a

set Q of constraints, W (Q) = Yq~o wi will denote its total weight.

Algorithm RANDOPT.
Input: Problem (P) in d variables, with a set N of n constraints.

Output: An optimal solution x (N) for the problem.

Step 1.
Step 2.

Step 3.
Step 4.
Step 5.
Step 6.

Set o~d~-4d2+d; [3d~l/(2d); for i = 1 , . . . , n set wi<- 1.
Choose R c N - S with IRI = o / d at random, according to the weights wi.

Set Q ~ R u S .
Use SOLVE on P(Q) to obtain its optimal solution, x(Q).
Find V = V o.
I f V = 0 then output x(Q) and terminate.

Else if W(V)<~fld • W (N) then for all i c V set w~-2w~. Go to Step 2.

The random choice in Step 2 is done as follows: r constraints are chosen

sequentially from the set of original constraints N - S . Initially, constraint i has

relative probabili ty w i / W (N) to be chosen, for all i. If constraint j has been chosen,

then we set wj ~ w j - 1 and repeat the process. Note that the same constraint may
be chosen several times.

We say that a new iteration has started whenever the algorithm executes step 2.
Hence, the number of iterations performed is equal to the number of executions of

SOLVE. We say that an iteration is successful if the weights are updated in Step 6,

namely, if the total weight of the set of violated constraints has not exceeded the limit.

Theorem 3.1. 7he expected number of iterations required by the algorithm is O(d log n).

Proof. We first show that the expected number of iterations between successful
iterations is at most two. For the sake of the proof, we use the following equivalent
representation of the random choice: We select at random a subset of size r from
the multiset M = M(w) in which for each i c N - S, constraint i appears wi times.
That is,

M(w) ={c(i , j)Ic(i , j) = i , j= 1 , . . . , w,, i= 1 , . . . , n}.

All subsets of size r in M are equiprobable. Clearly, [MI = W(N) . Denote by ~ c M

48 L Adler, R. Shamir / Randomized scheme for convex programs

the multiset of constraints which are violated at x(Q). Note that since f" is a multiset,
violation here is in the sense defined in Section 2, so in particular, if gc(;d~(x(Q)) = 0

and j > max{k I e(i, k) ~ Q} then c(i, j) c V o is a violated constraint of type (3a), but
it does not contribute to the doubling of weights in Step 6 of the algorithm. In other

words, W(V) ~< 119[. By Theorem 2.6, E(191) is not more than d (W (N) - r+ l) / (r -
d). Taking aa = 4 d 2 + d and rid = 1/(2d), we get

E (W (V)) ~ E(I 91) ~ (W (N) - 4 d 2 - d q- 1)/(4d) < W (N) / (4 d)

= ½~dW(N).

By Markov's inequality, the probability that W(V)>~f idW(N) is thus at most ½,

hence it takes on the average no more than two iterations until the condition in
Step 6 is satisfied. Consequently, the expected total number of iterations is at most
twice the expected total number of successful iterations.

Let Z = T N - S and d ' = IZ[. By assumption (A2), [T u[<~ d, so d'<~ d. We assume

that d ' > 0 , since if d ' = 0 then TN C S, and then the first iteration immediately

provides the optimal solution. To bound the expected number of successful iterations

we use again the multiset interpretation: I f the algorithm generates V # 0 , then

clearly f ' # 0. Moreover, if V # 0 Proposition 2.3 implies that V contains at least
one member of Z. Hence in each successful iteration, the weight of at least one
constraint of Z is doubled. This implies that W (Z) is at least doubled after every

d ' successful iterations. Initially W (Z) = d', so after kd' successful iterations

W (Z) >1 d'2 k. Also, initially W (N) = n, and Step 6 in the algorithm guarantees that

W (N) increases by no more than a factor of 1 + fie upon each successful iteration.
Hence after kd' successful iterations, W(N)<-n(l+f ia)kd '<~ne t3y'. W (Z)
increases much faster than W (N) , and the algorithm should terminate before
W (Z) >~ W (N) . Hence termination happens before k satisfies

W (Z) >i d'2 k >~ n et3~ka'>~ W(N) ,

i.e., if k (ln2-f ldd')>~ln(n/d ') . In summary, we get that the algorithm requires
O(d log n) iterations on the average. []

We can now state the complexity of the scheme. It will be expressed in terms of
the complexity of the subroutine for solving small problems, SOLVE, and of the
effort required to check whether a point satisfies a constraint. For fixed d, denote
by CSOLVE(m) the time complexity of SOLVE when solving a problem with m
constraints. Denote by CCHECK the time complexity of an oracle which checks
whether a point x ~ Nd satisfies a constraint of the problem. (The dependence on

the dimension and the input size L is suppressed here; it will be discussed for some
concrete classes in the next section). All complexity results are stated according to
the model of computa t ion of uniform-cost sequential r andom access machine [1].

L Adler, R. Shamir / Randomized scheme for convex programs

Theorem 3.2. The above scheme solves (P) in expected time complexity:

49

O(d log n[n . CCHECK+ CsoLvE(4d2 + 2d + 1)]).

Proof. By Theorem 3.1, the expected number of iterations is O(d log n). In each
iteration we use SOLVE on a subproblem with at most 4d2+ 2d + 1 constraints, and

then check which of the n constraints of the original problem are violated at the
optimum point. The complexity of the random choice of R can be performed in
O(n) steps (see [2] and the references thereof), so it is dominated by the latter
test. []

4. Complexity results for specific problem classes

In this section we apply the scheme to several problems, including linear and convex
quadratic programming. The algorithms we shall use as subroutines in the scheme

have complexity bounds which depend polynomially on the size of the input.
Therefore, the resulting complexities will be expressed as functions of n, d and the
binary input length L.

Theorem 4.1. Given a subroutine for solving a convex programming problem with d
variables, n constraints and input length L in time T(n, d, L), and another subroutine

for checking if a constraint is satisfied by a given point of complexity CCHECK, the
expected time complexity of algorithm R A N D O P T is

O(d log n[n . CCHECK+ T(4d2 + 2d + l, d, L)]).

Proof. Follows immediately from Theorem 3.2. []

Note that the theorem applies only to those convex programming problems for
which the input length is well defined. For general convex programming problems,
this its not always the case.

Corollary 4.2. A problem with convex quadratic objective and linear constraints is
solvable in expected time O(d log n(dn + d6L)).

Proof. For convex quadratic programming problems, an algorithm based on
Karmarkar's interior path method gives a solution in O(n3L) time (see, e.g., [10]).
The time requi[red to check whether a point satisfies a linear constraint is obviously
O(d) . Hence the result follows from Theorem 4.1. []

50 L Adler, R. Shamir / Randomized scheme for convex programs

Corollary 4.3. A problem with separable convex quadratic objective and linear con-
straints is solvable in expected time O(d log n(nd + d4L)).

Proof. These problems are solvable by the same algorithm as in the previous case,
in time O((nd2+n3/2d)L) (see [10]). []

Corollary 4.4. The linear programming problem is solvable in expected time

O(d tog n(nd + d4L)).

Proof. This is a special case of Corollary 4.3. []

Theorem 4.5. Using interior path following algorithms, convex quadratic program-
ming problems and linear programming problems can be solved within 0 (d 2 (log n) L)

major iterations on the average.

Proof. In proving Theorem 3.1, we have shown that overall the scheme solves on
the average at most O(d log n) problems each of which has at most 4 d 2 + 2 d + l

constraints, and size at most L. Since it is possible to solve convex quadratic problems
with n constraints in O(nl/ZL) major iterations of interior path following algorithm
(see, e.g., [10]), the expected total number of such iterations is no more than that

stated in the theorem. []

We now demonstrate the speedup (in terms of complexity) obtained by the scheme
for two well known polynomial algorithms for the linear programming problem.
Given an algorithm ALG for solving linear programs, denote by PALG the ratio of
the complexity of ALG to the expected complexity of RA N D O P T which uses ALG
as a subroutine to solve small subproblems. By Corollary 4.4, for Karmarkar's
interior point algorithm (using, for example, the variant studied in [10]), one gets
PKAR = ~2(~,/n L/(d log n)) when L = O(n/d3), and P K A R = ~(n3 /2 / (d4 log n)) other-

wise. For the ellipsoid algorithm [7] which requires O(nd3L) operations (see, e.g.,
[5]), PELL = g~(dL/log n) i fL = O(n/d 4) and PELL = ~2(n/(d3 log n)) otherwise. Note

that if L represents the size of the input, L ~> n, so only the second case applies for
both algorithms, with a guaranteed speedup for n ~ oo and n/d sufficiently large.

In all the above expressions L may be replaced by A, the logarithm of the largest
absolute value of a subdeterminant of the problem data (see, e.g., [14]), if that value
is known in advance. In that case p depends on the relation between zl and n.
However, if we assume that there are no identical constraints in the input, then we
can determine a uniform lower bound on the speedup, which is independent on A,
by noting that n cannot increase too much without affecting A: If the largest absolute
value of an input number in the integer data is k, then n <~ (2k+ 1) a, which implies

L Adler, R. Shamir / Randomized scheme for convex programs 51

log k = O ((l o g n) / d) , so zi = g 2 ((l o g n) / d) . This implies PKAR~-J"~(~/d 2) and

PELL = O(1). Hence even with A as small as possible, a speedup is guaranteed for
the interior point algorithm when n = J ~ (d 4) , and for the ellipsoid the randomization

is always competitive. Note that for fixed d and n ~ ~ all the above results become

even stronger.
In all the cases discussed in Theorems 4.2-4.5 above, the constraints are linear

and the objective function is linear or convex quadratic. Such problems can be
presented as linear complementarity problems, i.e., find z t> 0 and w >/0 such that
w - M z = q and z T w = 0, where M is an n × n matrix and q is an n-vector (for the

reductions see, e.g., [11]). Note that feasibility of the linear complementarity problem

guarantees botlh boundedness and feasibility of the original problems. In these cases,
in order to satisfy the assumptions of Section 2, the following can be done: One
can construct an equivalent linear complementarity problem with additional con-
straint set S and additional variables, which is feasible and in which n, d and L
were only slightly increased without affecting the complexity (see, e.g., [10] for
details). This guarantees property (A0). By including the set S in all solved subprob-
lems, we guarantee their boundedness which is required in (A1). Furthermore, it is
possible to perturb q so that every basic feasible solution of the above problem is
non-degenerate. This will satisfy the rest of the assumptions. The perturbation of q
can be done formally without affecting L, as is done, for example, in [11]. Since
all our assumptions can be satisfied for linear complementarity problems with
positive semi-definite matrix M, the randomized scheme can be applied to any
algorithm which solves such problems. For other convex problems, the existence

of a solution subroutine as well as the validity of assumptions (A0)-(A3) should
be established in order to guarantee the proved convergence bounds of the random-

ized scheme.

5. Concluding remarks

1. There is a certain resemblance between the randomized algorithm and the dual
presentation of "partial pricing" method for solving linear programs. In both cases,
optimality of a subproblem is reached before considering the rest of the constraints.
For the general convex programming case, the randomized scheme fits into the
framework of general relaxation techniques. Since those schemes are commonly
used in practice, the randomized scheme might be of interest for practical
implementation.

2. Algorithms with complexities which are independent of the sizes of the input
numbers (e.g., the simplex method or strongly polynomial algorithms) may also be
accelerated by the above scheme. For linear programs, Clarkson [2] described how
to use the simplex method (or any vertex enumeration method) in SOLVE in order
to improve the time complexity which depends on d and n only. Note that this
case is covered by Theorem 4.1.

52 L Adler, R. Shamir / Randomized scheme for convex programs

Acknowledgement

This research was supported by the United States Navy Office of Naval Research
under contract N00014-87-0202. Part of the work was performed when the second
author was visiting DIMACS and RUTCOR in Rutgers University, and supported
by NSF grant NSF-STC88-09648, and Air Force grants AFOSR-89-0512 and AFOSR-
90-0008. Their financial support is gratefully acknowledged.

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms
(Addison-Wesley, Reading, MA, 1974).

[2] K.L. Clarkson, "ALas Vegas algorithm for linear programming when the dimension is small,"
Proceedings o f the 29th IEEE Symposium on the Foundations o f Computer Science (1988).
[Revised version: AT&T Bell Laboratories, 1991.]

[3] M.E. Dyer and A.M. Frieze, "A randomized algorithm for fixed-dimensional linear programming,"
Mathematical Programming 44 (1989) 203-212.

[4] P.E. Gill, W. Murray and M.H. Wright, Practical Optimization (Academic Press, New York, 1981).
[5] M. Gr6tschel, L. Lov~sz and A. Schrijver, Geometric Algorithms and Combinatorial Optimization

(Springer, Berlin, 1988).
[6] N. Karmarkar, "A new polynomial time algorithm for linear programming," Combinatorica 4 (1984)

373-395.
[7] L.G. Khachian, "Polynomial algorithms in linear programming," Zhurnal Vychislitelnoi Matematiki

i Matematieheskoi Fiziki 20 (1980) 51-68. [English translation in: U.S.S.R. Computational Mathe-
matics and Mathematical Physics 20 (1980) 53-72.]

[-8] D.G. Luenberger, Linear and Nonlinear Programming (Addison-Wesley, Reading, MA, 1984, 2nd
ed.).

I-9] N. Megiddo, ed., Algorithmica 1, Special issue: Progress in Mathematical Programming (1986).
[10] R.C. Monteiro and I. Adler, "Interior path following primal-dual algorithms, Part II: Convex

quadratic programming," Mathematical Programming 44 (1989) pp. 43-66.
[11] K.G. Murty, Linear Complementarity, Linear and Nonlinear Programming (Heldermann, Berlin,

1988).
[12] P.M. Pardalos and J.B. Rosen, Constrained Global Optimization : Algorithms and Applications. Lecture

Notes in Computer Science No. 268 (Springer, Berlin, 1987).
[13] R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, N J, 1970).
[14] A. Schrijver, Theory of Integer and Linear Programming (Wiley, New York, 1986).
[15] J. Stoer and C. Witzgall, Convexity and Optimization in Finite Dimensions (Springer, Berlin, 1970).

