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A Simplex Variant Solving an m x d Linear Program in 
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We present a variant of the Simplex method which requires on the average at 
most 2 (min(m, d) + 1)2 pivots to solve the linear program min crx, AX 2 6, x 2 0 
with A E Rmrd. The underlying probabilistic distribution is assumed to be invari- 
ant under inverting the sense of any subset of the inequalities. In particular, this 
implies that under Smale’s spherically symmetric model this variant requires an 
average of no more than 2(d + 1)2 pivots, independent of m, where d 5 m. 
0 1987 Academic Press, Inc. 

1. INTRODUCTION 

The Simplex Method for Linear Programming, originated by Dantzig in 
1947, is one of the most frequently used algorithms in industry and gov- 

* This paper originally appeared in December 1983 as Report No. UCBKSD 83/158 of the 
Computer Science Division, University of California at Berkeley. The results were reported 
at the TIMS/ORSA meeting, Orlando, Florida, in November 1983. 
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ernment. The ordinary measure of complexity of this method is the num- 
ber of pivot steps it requires to solve a linear program, expressed as a 
function of the dimensions of the problem. Vast practical experience 
indicates that this function is linear, or at most polynomial (Dantzig, 1963; 
Kuhn and Quandt, 1963). However, examples have been constructed for 
several variants of the Simplex method, showing that in the worst case the 
number of pivots may grow exponentially with the dimensions (Klee and 
Minty, 1972; Jeroslow, 1973; and others). Karmarkar’s (1984) algorithm 
has a worst-case running time which is polynomial in the length of the 
problem data, and appears to be competitive with, or even superior to, the 
Simplex method on many classes of problems. 

Recently, several works have tried to explain the efficiency of the Sim- 
plex method by approaching the complexity issue probabilistically: As- 
suming some distribution of the problem data, this approach tries to show 
that the average number of pivots grows slowly with the problem’s di- 
mensions. To quote these results denote the number of variables in the 
problem by d and the number of inequalities by n, and assume d I IZ. We 
use c to denote a constant and c(d) to denote a function of d only. 
Borgwardt (1982a,b) showed that a parametric simplex variant requires an 
average of at most c . 12 * dZ * (d + l)* pivots for a probabilistic model 
which generates only feasible linear programs. Smale (1983a) showed that 
the Parametric Self Dual Simplex requires an average of at most c(d) 
(log@ - d))“cd+l) pivots when the problem data are drawn from a spheri- 
cally symmetric distribution. Megiddo (1986) improved that bound to 
F(d). This implies that the number of pivots tends to a finite limit when d 
is fixed and m + cQ. However, this limit is superexponential in d. Adler 
(1983) and Haimovich (1983) demonstrated that some Parametric Simplex 
variants require an average of at most d steps once a vertex of the feasible 
region is given, but these results do not have immediate consequences for 
the full (Phase I-II) Simplex method. 

We defined a family of Simplex variants which we called Constraint- 
By-Constraint (CBC) algorithms (Adler et al., 1986). We showed that 
under probabilistic assumptions which are weaker than Smale’s, these 
algorithms require an average of no more than c(d) pivots where c(d) is 
between d . 1 Sd and 22d, depending on the algorithm and the probabilistic 
model. In this paper we show that one of these variants, the Parametric- 
CBC algorithm, with proper initialization, requires at most 2(d + l)* 
pivots on the average, independent of m. Our probabilistic model requires 
that the problem data be nondegenerate and be generated by a distribution 
which is invariant under changing the sense of any subset of the inequali- 
ties defining the problem. Since Smale’s probabilistic model satisfies these 
assumptions, this implies that the Parametric-CBC algorithm requires an 
average of at most 2(d + I)* pivots for Smale’s model. 
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This result is one of three studies which obtain a quadratic bound on the 
expected number of pivots of a Simplex variant. The other two are by 
Todd (1983) and Adler and Megiddo (1983), who obtained an O(d*) bound 
on the expected number of pivots for the .Self-Dual Simplex algorithm. 
The three studies make identical probabilistic assumptions and all three 
employ lexicographic pivot rules. 

Megiddo (1985) has observed that, although the Parametric-CBC algo- 
rithm and the Self-Dual algorithm are in general quite different, their 
lexicographic versions execute exactly the same sequence of pivots. Thus 
all three investigations are concerned with the same Simplex variant. 
However, viewing this variant as a special case of the Parametric-CBC 
algorithm enabled us to apply the results of Adler (1983) and Haimovich 
(1983), and thereby to obtain a simple and direct quadratic bound. 

2. PRELIMINARIES 

For a matrix A E Rmxd, we denote by Ai or Ai. the ith row of A, and by 
A.i the ith column of A. If S is a sequence of indices of rows (columns), we 
denote by As (AJ the submatrix obtained by taking only the rows 
(columns) in S. 

The Linear Programming Problem is 

min crx 

(P) s.t. Ax 2 b 

x 2 0, 

wherec,xERd,bERm,AER mxd. The constraints of the form Ai.x 2 bi 
are called matrix constraints, to be distinguished from the Xi 2 0 sign 
constraints. Define also 

M:= [j, n:=d+m. 

So an equivalent presentation of (P) is min C~X, 44x 2 u. Let D E R k+l, 
j : = max(k, I), If everyj x j submatrix of D is nonsingular we say that D is 
strongly nondegenerate. 
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The Parametric Objective Problem is 

min crx + AC~X, c,cERd,hER 

Mx 2 v, 

where we wish to find the optimal solutions for all values of the parameter 
A. Here c is called the objective and C the co-objective. 

This problem can be solved by the Parametric Objective Algorithm 
(Gass and Saaty, 1955; Dantzig, 1963), which is a variant of the Simplex 
method. The algorithm starts at a vertex optimal with respect to crx in 
F: ={x 1 Mx 2 v}, and (assuming nondegeneracy) when A increases fol- 
lows a connected path of edges and vertices of F. This path is called the 
eficient path. The union of the efficient paths for co-objectives C and -C 
is called the co-optimal path. We call a vertex or an edge of F (c, C)-co- 
optimal if it is on the co-optimal path generated when c is the objective 
and F the co-objective. 

Every inequality of the form Mix 2 vi can be thought of as a half-space 
in Rd determined by the hyperplane Mix = vi and a sign choice with 
respect to that hyperplane. The opposite sign choice would yield the 
inequality Mix 5 Vi. Given k hyperplanes in Rd, k 2 d, every one of the 2k 
possible sign combinations determines a constraint set or an instance. 
Assuming nondegeneracy, every instance is either infeasible or d-dimen- 
sional, in which case it is called a cell. 

Let s = {sl, . . . , sd} c (1, . . . , k} be a set of d distinct indices of 
hyperplanes. S is called a basic sequence of M. Denote 

M, : = 

If det(M,) # 0, then these hyperplanes intersect in vertex X = (MS)-‘us. In 
that case we also say that S is the basis corresponding to X. Under 
nondegeneracy this is a one-to-one correspondence. 

Adler (1983) and Haimovich (1983) showed that (assuming nonde- 
generacy) every vertex of the arrangement of hyperplanes is co-optimal in 
exactly (d + 1) of the 2d cells incident on it. 

A convenient way to present the sign choices is a sign matrix. A k x k 
matrix J is called a k-sign matrix (denoted J E SM(k)) if 

Jij = 
I 0 ifi#j. 
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Thus for every matrix A E Rkxd 

Ai. if Jii = +l 
(JAh. = -A,, 

I ifJji = -1. 

So all the instances determined by the generating hyperplanes Mix = ui, 
i=l,. . . , m, can be represented by 

JM 2 Jv, J E SM(m) 

and clearly ISM(m)l = 2”. 

3. THE ALGORITHM 

Several variants of Constraint-By-Constraint algorithms, as well as 
proofs of their validity, were presented in Adler et al. (1986). We shall 
briefly state the Parametric-CBC (PCBC) algorithm here, and refer the 
reader to Adler et al. (1986) for details and proofs. 

For the Linear Program min crx, Mx 2 u, where M E Rnxd (m = n - d), 
define 

X”: = {X E Rd ) Mix z Vi, i = 1, . . . , d + k}, k=O,l,. . . ,m 
x: = x(m). 

Stage 0: Let X be the unique vertex of X(O). Choose C E Rd such that 
the unique minimum of C rx in X(O) is at X. Go to Stage 1. 

Stage k (1 5 k 5 m): Starting at X which minimizes CTx in X(k-I), use 
the parametric objective algorithm to solve min{cTx - /3Mkx 1 x E Xck-l)}. 
Stop at the first point ,? along the path satisfying Mki ?. uk. Set X : = i and 
go to stage k + 1. (If there is no such point along the path-Stop. X = cp). 

Stage m + 1: Starting at X which minimizes C Tx in X, use the paramet- 
ric objective algorithm to solve min{ZTx + /3cTx 1 x E X}. The endpoint of 
the path yields the required solution. It may be either an optimal vertex or 
a ray demonstrating that the solution is unbounded. 

If the problem includes nonnegativity constraints, we shall consider 
them the first d constraints, so that X co) = R “, . In that case we may choose 
in step 0 as the starting objective any C E Rd satisfying C 2 0. Similarly if 
the sign constraints Jx 2 0 where J E SM(d) are included, we can choose 
any Je with e > 0 as the starting objective. To prove our result we shall 
use the objective 
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e: = e(c): = (E, G, . . . , ed), 

where E is positive and sufficiently small. 
For a linear program in form (P), we shall choose to solve either the 

primal or the dual problem, so that the algorithm is always performed with 
d I m. 

4. THE PROBABILISTIC MODEL 

We assume that the data (A, b, c) are generated according to a probabil- 
ity distribution satisfying the following properties: 

(a) For fixed (A, b, c), all sign combinations of the inequalities 

Ai.x (I or 2) bi, i=l,. . . ,m 

Xj(4 or 2) 0, j= 1,. . . 3 d 

are equiprobable. In other words, 2d+m equiprobable instances J = [J *, J2] 
are generated according to J1 E SM(d), .I2 E SM(m) all having the form 

min crx 

J’x 2 0 

J2Ax 2 J2b. 

Note that this condition is equivalent to the statement that all 
generated by inverting signs of rows of [A, b] and columns of 
equiprobable. 

(b) With probability one, both 

and V, A, bl 

are strongly nondegenerate. Smale (1983a) assumes that the data are ob- 
tained from a spherically symmetric distribution. Since every such distri- 
bution satisfies properties (a) and (b) our results will hold in particular for 
his model. Our model, however, need not assume that the distribution is 
continuous. In fact, it may generate a finite set of 2m+d linear program 
instances, all corresponding to the same strongly non-degenerate data 
(A, b, cl. 
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The advantage of the model described above is that it enables one to 
reduce the probabilistic analysis to combinatorial analysis. The same kind 
of model was used by May and Smith (1982) for investigating random 
polytopes, and by Adler and Berenguer (1981, 1983) for investigating 
several issues in random linear programs. 

5. ANALYSIS 

Consider data (A, 6, c) satisfying our probabilistic model assumptions. 
These data induce 2m+d equiprobable instances, corresponding to all sign 
combinations of the inequalities. In stage k + 1 of the Parametric-CBC 
algorithm, d + k constraints are present, and they induce 2k+d equiprob- 
able instances. An instance may be represented by the sign combination 
J = [Jr, J2] it uses, namely 

where J’ E SM(d), J2 E SM(k). Denote those instances by J,, . . . , J,,+k. 
All instances in stage k + 1 use -A k+l as the co-objective. The starting 

objective C used in instance Jk = [J:, Ji] was determined in stage 0 to be 
p(Jk) : = J&?. Denote these objectives by el, . . . , e2d. 

Consider a fixed basis S, corresponding to a vertex X in stage k + 1. 
Define 

1 
F(Ji, ej, S) : = 

if basis S is (ej, -Ak+l)-co-optimal in instance J;. 

0 otherwise 

We are interested in the number of pivots actually performed by the 
PCBC algorithm in all the instances in stage k + 1. An upper bound to this 
number is 

G(k): = C T F(Jiy Ji’e, S). 
s 

That is, for every basis S we wish to count a pivot in instance Ji only if the 
objective prescribed by the algorithm to be used in instance Ji makes S co- 
optimal. 
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Adler (1983) and Haimovich (1983) proved that for every basis S and for 
every objective ej, assuming nondegeneracy, 

F F(J;, ej, S) = d + 1. 

From this we get the basic result 

G(k) 5 T ; T F(J;, ei, S) = (” i “) 2d(d + I), 

which was used in by Adler et al. to obtain the bound (d + 1)2d+‘. We shall 
now improve upon that result using the special structure of the vector 
e = e(e). 

We say that a basis S is of type r if { 1, . . . , r} C S, {r + I} @ S, in other 
words, if the tight inequalities for that basis include xl = 0, . . . , x, = 0, 
but do not include x,+i = 0. The main observation we shall use is the 
following: 

THEOREM. Zf S is of type r and there exists ej such that F(Ji, ej, S) = 1 
then C F(Ji, ej, S) 2 2d-r-’ for sufficiently small E. 

We’leave the proof to the end of this section. Let us first show how we 
use this theorem to get our main result: Define 

clearly 

i 

1 
G(Ji, S): = 

if z F(Ji, ej, S) 2 1 
41 

0 otherwise; 

F(Ji, J,!e, S) 5 G(Ji, S) V J;; S. 

If S is of type r, then the theorem implies that 

G(Ji, S) 5 [C F(Ji, ej, $)} 2-(d-r-1). 
PI 

Now let us consider separately each type of S in the sum generating G(k): 

G(k) = i 2 2 F(Ji, Jje, S) 
r=O s J, 

of type r 

5 i C 2 G(Ji, S) r=O s 4 
of type r 
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5 2 C 
s 

C [C F(J;, ej, S) 2-‘d-‘-‘)) 
of type r 

J, e, 

= 2 F [C C F(Ji, ej, S)) 2Fdmrm’) 

of type I 
e, J! 

=i( 
r=O 

k + d - ' - ', {2d(d + 1)) Z-Cd-r-I) 
d-r 

= 2d(d + 1) 2 ck + ; - ‘) 2-(‘-‘I. 

Since all 2k+d instances in stage k + 1 are equiprobable, we get that the 
average number of pivots required to solve an m x d problem using the 
PCBC is 

m+l 

p(m, d) 5 c G(k) 2-(k+d) 
k=l 

5 (d + 1) m$; $ (k + : - ‘) 2-(k+t-I) 

= (d + 1) i 2' i" + ; - ') 2-(k+r-I) 

r=O k=l 

I (d + 1) i c (j! 2-j = 2(d + 1)2. 
r=O j=: 

This result was proved for fixed strongly nondegenerate data, and is 
independent of those data. Since our model generates strongly nonde- 
generate data with probability one, the main result follows. 

Before proving the theorem, let us first prove two short lemmas: 

LEMMA 1. The Strong Nondegeneracy property is preserved under 
pivotal transformations. 

Proof. Since a pivotal transformation is nonsingular, the rank of every 
d x d submatrix is preserved under such transformations. So if every d x 
d submatrix of the original matrix is nonsingular, the same is true after the 
pivotal transformation. H 

COROLLARY 1. In the nonbasic part of the transformed matrix de- 
scribed in Lemma 1, every 1 x 1 submatrix is nonsingular, where 1 = 
1 ,*. ., d. 

Proof. For 1 = d this follows directly from Lemma 1. Let Q be an 1 x 1 
submatrix of the nonbasic part of the transformed matrix, with 1 < d. By 
adding some unit columns from the basic part (and reordering rows and 
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columns if necessary), a d x d matrix of the form QO 
[ I 0 I can be generated. 

By Lemma 1 this matrix is nonsingular, hence Q is nonsingular. n 

LEMMA 2. Let P(E): = .+‘(cY + $, ai&‘) with CY # 0. If for E > 0 suf- 
ficiently small P(E) > 0, then for every polynomial P(E) obtained from 
P(E) by changing the signs of some of the coefficients ai, also P(E) > 0. 

Proof. Since E > 0, also CY + ii, aiEi > 0. Since that is true for 
sufficiently small E, then by continuity at E = 0 we get Q 2 0. Since a! # 0 
we get 1y > 0. Hence also (Y + jz, (*ai)Ei > 0 for E sufficiently small, for 
every possible sign combination. n 

Proof of Theorem 

To prove the theorem, we shall show that the following holds for suffi- 
ciently small E: 

Let S be of type r and let Jk be any instance. Let E be any objective out 
of er, . . . , e2d. If S is (2, a)-co-optimal in Jk, then for every C = 
(El,. * * 9 E,+I, J(E,+2, . . . , Ed)), J E SM(d - r - l), S is also (6, a)-co- 
optimal in Jk. 

Since[SM(d - r - l)/ = 2d-r-’ this will complete the proof. 

For S of type r, the corresponding basis takes the form 

r d-r 

0 r ----- --___ 1 ET d-r 

(The numbers above and to the right of the matrix are the dimensions of 
the corresponding submatrices.) In order for S to be (Z, @co-optimal 
there must be some 8 E R satisfying 

(BT)-‘(2 + I%) > 0, 

where the strict inequalities are implied by the nondegeneracy of the data. 
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Let us express the inverse explicitly: 

r d-r 

The last equality is introduced to define the first non-unit column of the 
inverse matrix. Define also u : = (I3 r)-‘a. So the condition 

3 0 s.t. (Iv)-ye + &I) > 0 

is equivalent to 

3 8 s.t. (--;-- ) --;-- ) --;--) e + eu > 0 

or, redefining .? =: (Z’, Z,,,, Z2), where Z’ E R’, F,+, E R, iT2 E Rdmr-‘, 

if’ 3 8 s.t. I1 0 . + e,+, (;) + (E) e2 + 8u > 0. (1) 

0 

Using the Fourier-Motzkin Elimination method, the system (1) has a 
solution 8 if and only if the following system has a solution 

; [(fy) + e,+1(;) + (E) z-21i - $ [(C) + er+l (:) + (E) zjj > 0 
Vi Set. Iii > 0 

Vj Sat.. Uj < 0 (2.1) 

[(egL) + 2,+1(t) + ((g eqk > 0 t/k s.t. uk = 0. (2.2) 

Now we want to show that if (2) holds for sufficiently small C, every 
change in the signs of the coordinates of the vector e2 will still keep the 
system (2) valid. By the equivalence of the systems (1) and (2) this will 
complete the proof. 



A SIMPLEX VARIANT 383 

Since the data are strongly nondegenerate, Corollary 1 (with 1 = 1) 
implies & # 0 for all k, so all the inequalities in (2) are of the form (2.1). 
These can be partitioned into two types: 

Type 1. i 5 r orj I r. The inequalities here take the form 

a&k + Ek+‘P(&) z=- 0, 

where k = min(i, j) 5 r, (Y # 0, and P(E) is a polynomial in E. By Lemma 2 
the result follows. 

Type 2. i, j > r. These inequalities have the form 

kc’+1 [; - ;] + &‘+v(&) > 0. 

By the strong nondegeneracy of the data, Corollary 1 (with I= 2) implies 
Wilui - wj/uj # 0. SO again the conditions of Lemma 2 hold and the result 
follows. n 

6. CONCLUDINGREMARKS 

1. The PCBC algorithm can be implemented by a lexicographic rule, 
without any explicit use of E. The reasoning behind this is as follows: 

Let the current co-optimal basis in stage k + 1 be BT. The co-objective 
is a : = -Ak+l and without loss of generality assume the objective is e. Let 
a : = B-b, Z: = B-Q. According to the Parametric Objective Algorithm, 
the next variable to leave the basis is determined by the ratio test: 

where N: = {i 1 Z; < 0). 

Recall that 

Because B lies on the efficient path Zi > 0 tliEN* Let l(i) be the index of the 
first nonzero element in row B;‘. If E > 0 and is sufficiently small, this can 
happen only if, for all i E N, B,& > 0. In other words, the matrix BN! is 
lexico-positiue. Again, for E > 0 sufficiently small, if i, j E N and I(i) > Kj) 
then j cannot be the minimizing index in the ratio test. So only indices i 
with Z(i) = t : = max{l(j)lj E N} are candidates to win the ratio test. Since 
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they all have the form Zi = Bl;er + . * * + B$ed, we need to perform the 
ratio test: 

(The strong nondegeneracy guarantees that there will be no ties in this 
test, so we never need to go beyond the leading elements to compare 
B&+1/(-ai) a n d so on.) So the leaving variable is the one which lexico- 
graphically minimizes 

and no E is involved in the actual implementation. 
2. The result obtained here holds also for other forms of linear pro- 

grams. In Adler et al. (1986) we showed that presenting the linear program 
with nonnegativity constraints is immaterial. The essential requirement is 
sign invariance with respect to each of the constraints present in the 
problem. In general, for a problem with n arbitrary constraints and d 
variables, under our model assumptions the expected number of pivots is 
no more than 2(min(d, n - d) + 1)2. By duality this also yields similar 
results for linear programs with equality constraints. 

3. A desirable extension of our analysis is to relax the strong nonde- 
generacy assumption. This may allow improvement over the results ob- 
tained in Adler et al. (1986) for structured linear programs which yield 
sparse matrices, e.g., ones arising from transportation problems. 

4. The crucial property for our analysis is sign invariance, which may 
be interpreted as a special kind of symmetry around the origin. However, 
in Smale (1983b), it is stated that the results proven in Smale (1983a) can 
be obtained on the weaker assumption of invariance under coordinate 
permutations. Blair (1986) proceeded to show that indeed the requirement 
that the distribution be continuous can also be removed and still the 
permutation-invariance assumption yields essentially the same results as 
Smale’s. However, that result required that m 9 d. It may be interesting 
to extend our model in that direction. 

5. A troublesome point which we discussed in Adler et al. (1986), and 
which was mentioned in several previous papers, is the behavior of the 
sign-invariant model in the case where the ratio of the dimensions is very 
far from 1: For m % d, all but a vanishing fraction of the linear programs 
generated by the model will be infeasible. Similarly, for m + d, almost all 
problems generated will be feasible and unbounded. Both of these catego- 
ries of linear programs appear to be easier to solve than problems which 
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are feasible and bounded. That may indicate that this model is inadequate 
for obtaining meaningful results in such a situation. 

This does not seem to be a severe limitation of our results, since they 
are also meaningful when 171 and d are approximately equal. In particular, 
in the case m = d for which Klee and Minty (1972) demonstrated a worst- 
case behavior which is exponential in d, we get that the average-case 
behavior of the algorithm is at most quadratic in d. Also, when m = d the 
proportion of cells containing optimal solutions out of all instances is 
R(d-1’2). So the expectation of the number of pivots per instance, condi- 
tioning on the instance having an optimal solution, is O(d2.5). 

Still, investigating a model which generates only feasible and bounded 
problems seems an interesting next step. 

6. Can similar results be achieved for other variants of the Simplex 
method, besides the one investigated by Todd (1983), by Adler and Me- 
giddo (1983), and by this work? (It is interesting to note that most of the 
probabilistic results obtained so far-perhaps with the exception of those 
of Adler et al. (1986) and Blair (1986)-have used parametric variants of 
the Simplex method.) 

7. Another interesting open question is obtaining higher moments of 
the random variable investigated, especially obtaining the variance of the 
number of pivots. 

Except for rough bounds (like Pr[no. of pivots ra2(d + 1)2] % l/a, 
obtained from Markov’s inequality), it seems that new proof techniques 
and perhaps stronger probabilistic assumptions are required for such 
analysis. 

8. By more refined analysis, our bounds on the number of pivots can 
be reduced by a constant factor. However, a reduction of the degree of 
the polynomial is impossible. This is a consequence of a recent study of 
Adler and Megiddo (1985): Under stronger probabilistic assumptions they 
have extended their work on the Self-Dual Simplex variant (1983) to 
obtain a quadratic lower bound on the average number of pivots. Since 
their Simplex variant was proven in Megiddo (1985) to be identical to the 
PCBC algorithm with lexicographic initialization vectors, this implies that 
the upper bound for the weaker model discussed here cannot be subqua- 
dratic. The computation of a tight lower bound under the weaker, more 
general model when using the PCBC algorithm is still to be carried out. 
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