A SIMPLEX ALGORITHM WHOSE AVERAGE NUMBER OF STEPS
IS BOUNDED BETWEEN TWO QUADRATIC FUNCTIONS
OF THE SMALLER DIMENSION*

ILAN ADLER{ and NIMROD MEGIDDO#

Abstract. It has been a challenge for mathematicians to theoreti-
cally confirm the extremely good performance of simplex-type algo-
rithms for lincar programming. In this paper we analyze the average
number of steps performed by a simplex algorithm so-called -the self-
dual method. Instead of starting the algorithm at the traditional
point (1,--+,1)T, we use points of the form {1,¢,¢2,---)7, with
¢ sufficiently small. The result that we get is much better, in two
respects, than those of the previous analyses. First, we show that the
expected number of steps is bounded between two quadratic functions
¢y(min(m, n))? and cy(min(m, n))? of the smaller dimension of the
problem. This should be compared with the previous two major results
in the ficld. Borgwardt proves an upper bound of O{n4m!/(»—1)
under a restrictive model which implies that the zcro-vector satisfies
all the constraints, and also the algorithm under his consideration
solves only problems from the particular subclass. Smale analyzes
a less restrictive algorithm. He shows that for any fixed m there
is a constant ¢(m) such the cxpected number of steps is less than
¢(m)(In n)™(m+1); Megiddo has shown that, under Smale’s model, an
upper-bound C(m) exists. Thus, we prove for the first time a polyno-
mial upper bound with no restrictions (except for non-degeneracy) on
the problem, and establish for the first time a nontrivial lower bound
of precisely the same order of magnitude. Sccondly, our probabilistic
model is much less restrictive than the previous oncs. Both Borgwardt
and Smale require the input vectors to be drawn from spherically
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symmetric distributions. 1n our model we require invariance only
under certain reficctions and not under every possible rotation. The
fact that € has to be sufficiently small raises no difficultics whatsoever.
The algorithm can cither determine the correct value while solving the
problem, or simply operate on e symbolically, using “lexicographic”
rules.

1. Introduction. The “simplex™ algorithm for linear programming,
which was devcloped by Dantzig [D], is not just a single algorithm
but, as matter of fact, a class of algorithms. Their common feature is
that they iteratively change the basis of a linear system of cquations,
until they rcach an “optimal” basis, or a basis that cxhibits that no
optimal solution exists. For a linear programming problem with n

(nonnegative) variables and m constraints, the number of bases is
(m: ™} and hence this quantity is an obvious upper-bound on the
number of steps that any simplex-type algorithm can make. However,
the vast computational experience accumulated to date has shown
that the number of steps is usually much smaller. This has been
observed while solving practical problems as well as oncs generated
in a laboratory. It has been a challenge to confirm these findings
theorctically. Tremendous cffort has been made in the direction
of studying properties of convex polyhedra which are rclated to
linear programming. However, it is known that many simplex-type
algorithms may require exponential number of steps in the worst-case.
The first cxample to this cffect was given by Klee and Minty [KM],
and Murty [Mu] provided an example in the context of the sclf-dual
method. Similar cxamples arc known for several other variations of
the simplex method.

Borgwardt [Bol, Bo2] and Smale [S1, S2] have rccently provided
probabilistic anlyses of simplex-type algorithms. We note that an
analysis of this type requires a specification of algorithms to which it
applies, as well as probabilisic distributions of inputs. Both Borgwardt’s
and Smalc’s models assume that the vectors generating the problem
are sampled from spherically symmetric distributions; however, Smale
actually obtains his results under a weaker model of symmetry with
respect to permutations of coefficients within rows. Borgwardt analyzes
different variations on the radial part of his distributions, while under
Smale’s model the radial part is immaterial. Both of these analyses
deal with “parametric” simplex algorithms, and this is, apparently, a
key property for carrying out a probabilistic analysis.

In order to understand the contribution of the present paper, we
first state the results of Borgwardt and Smale.  Borgwardt considers
the problem in the form

Maximize Tz

subjectto Az <e

(where z,c € R", A€ R™*" and e = (1,---,1)T € R™). The



columns of A as well as the vector ¢ are distributed spherically
symmetrically over their respective spaces. Under this model the
zefo-vector satisfies the incqualities. Note. that under this model
every subproblem, determined by a subsct of the columns, has to
be feasible. Indeed, every problem, which is given together with a
feasible solution, can easily be transformed into Borgwardt’s form,
but the probablisitic assumptions can hardly be justified afterwards.
The algorithm is a certain parametric simplex method, with a special
initialization procedure which is necessary only for the mathematical
reasoning, and capitalizes on the fact that the zero-vector is feasible.
Therefore, the algorithm as a whole solves only problems from this
particular class. It cannot explain the so-called Phase 1 of linear
programs. Under this model, Borgwardt shows that the expected
number of steps, pZ(m, n), satisfies
pB(m,n) < entmiir

where ¢ is a certain constant, We note. that this upper-bound tends to
infinity when either m or n tend to infinity.

Smale considers the problem in the form
Minimize ¢z
subjectto Az > b
z2>0

(where z,¢c € R™®, A € R™X"™ and b € R™). Under his model, the
matrix A is spherically symmetrically distributed over R™ X" and the
vector (b, c) is (independently) spherically symmetrically distributed
over R™+™. However, a weaker model is actually used for obtaining
the result. The algorithm is the so-called self-dual algorithm simplex
algorithm [D] (also referred to as “Lemke’s algorithm™ [L]). The self-
dual algorithm requires a specification of a starting point in the positive
orthant of R™+™, Traditionally, as well as in Smale’s model, the
starting point is taken as (1,--+,1)T. Under this model, Smale shows
that the expected number of steps, p(m,n), satisfies the following
condition: For every fixed m there exists a constant ¢(m} such that
for every n,
plm,n) < c(m)(lnn)™mFN
Obviously, this upper-bound tends to infinity with n. Blair [Bi]
proves that the expected number of undominated columns under an
even more general model is less than ¢{m)(ln n)m(m+1)In(m-t1)+m
which implies such an upper-bound for a wider class of algorithms.
We remark that bounds like those of Smale and Blair can be derived
by estimating expected numbers of extreme points of the primal or the
dual polytope. Obviously, the efficiency of the simplex method does
not stem from a small number of extreme points, but rather from the
fact that usually only few of these points occur on the path followed
by the algorithm. Megiddo [Me1] has shown that under Smale’s model
the following limit exists, and that the scquence actually decreases to
the limit:
lim p(m,n) = ¢(m).
n—o0

An upper-bound on ¢{m) depended exponentially on m.

In this paper we improve upon the previous results considerably.
We confirm the observed phenomenon that the average number of
steps is polynomial in the smaller dimension of the problem. We
analyze the average number of pivot steps performed by the seif-
dual simplex algorithm with a different starting point. Instead of
the point (1,---,1)T. we start the algorithm at (1,¢,¢€%,---)T with
€ sufficiently small. The algorithm can operate on ¢ symbolically,
or can, alternately, be stated with “lexicographic” rules. The actual
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determination of e does not raise any difficulties whatsoever and,
incidentally, the algorithm itself can determine what is a sufficiently
small €. The choice of the different starting point yields a much better
bound on the average number of steps, p%(m, n). We show that this
number is bounded between two quadratic functions of the minimum

of the two dimensions:
¢1(min(m, n))? < p¢(m,n) < cz(min(m, n))>.

Thus, we obtain a nontrivial lower-bound which seems to be in conflict
with the common belief that the simplex algorithm performs on the
average only linearly many steps.

Furthermore, our analysis in this paper is carried out under a model
which is much weaker than Borgwardt’s and Smale’s. Instead of
complete spherical symmetry, we require only symmetry with respect
to certain reflections, together with a certain regularity: condition on
the matrix; this condition holds with probability onc if the problem is
sampled from any continuous distribution.

We discuss the model in Section 2. The algorithm is described in
Section 3. In Section 4 we describe the four cases to be distinguished
in the analysis of the probability of a basis to occur in the solution
process. The upper bounds for these cases are then analyzed in two
pairs in Sections § and 6. In Section 7 we prove the lower bound
result.

2. The probabilistic model. For an “average-case” analysis, with
results different from the “worst-case”, one has to make some assump-
tions on the distribution of problems. A probabilistic analysis does
not have to assume a unique distribution of problems. It is more
desirable to be able to prove good bounds that are valid for any
distribution in a wide class. Notice that under the model proposed by
Smale, any spherically symmetric distribution has the same average-
case complexity. However, one should seek wider classes such that
the average-case is not necessarily the same for all the members of the
class, but yet each satisfies some good bound.

Natural models to look at are those with some symmetry assump-
tions. Very roughly, the hope is that in a symmetric set of instances,
if one is bad then others should be good, so that the average over
the set should not be bad. More specifically, suppose we have a
group of symmetries and consider the equivalence-classes of instances
which are invariant under the group. Suppose the average over each
equivalence-class is nicely bounded. Then, regardless of how a class is
picked, provided an instance is adequately selected from the class, the
overall average will be nicely bounded. Subject to this terminology, it
is desirable to have the “classes” as small as possible, that is, the group
of symmetries as small as possible. Under the spherically symmetric
model, two instances (Ay, by, c1) and (A, ba,cy) are in the same
equivalence-class if (i) the matrix Az can bc obtained from A, by an
orthogonal transformation {of R™*™) followed by a multiplication by
a positive constant, and (ii) the vectors (by, ¢1) and (by, c3) are related
in a similar fashion. Obviously, each class contains a continuum of
instances.

Under our model the classes are finite. Given an instance (4, b, ¢), it
is convenicnt in the present section to consider an (m 1) X (n+1)-
matrix A® such that Aj; = Ay; G = 1,---,m, j = 1,--+,m),
Apyr;=6G G =1, A =b (i=1-,m)and
AL,y ayy = 0. Obviously, if A" is sampled from any continuous
distribution (over the subspace of R(’"+’)X("+‘) characterized by
Am +1,n+1 = 0), then every submatrix of A" (except for the entry
A, +1,n41) is non-singular. It is thus convenient for us to make
this assumption explicitly, cven though for our proofs not all the
submatrices have to be non-singular. Indeed, matrices which do not
satisfy our regularity assumption do arise in practice, and the simplex



algorithms handle them efficiently. However, it seems that generalizing
our proofs, using arguments of infinitesimal perturbations, would not
shed much more light on the problem.

The more important feature of the probabilistic model is the state-
ment of the group of symmetries. In fact, for the lower bound result
we need a model stronger than the one required for the upper bound
result. We first describe the weaker model. Under the weaker model
the group is generated by the m + n transformations of multiplying
cither one of the first n columns or one of the first m rows of the
matrix A* by —1. This group has 2™+" members, giving rise to
the same number of instances in each equivalence-class. We assume
that all the members of a class are equally probable, that is, given
that the class was picked, each member has the same probability to
be selected from the class. We note that an equivalent description of
the model can be given as follows. Instead of fixing the direction of
the inequalities Ar < b and z > 0 and letting columns and rows
be multiplied by —1, we can fix the matrix A” and then choose the
direction of each of the m + n inequalities independently at random.
Closely related models have been considered by Adler and Berenguer
[A, AB1, AB2, AB3], Buck {Bu}, Haimovich [H] and May and Smith
[MS]. We note that none of these papers analyzes a complete algo-
rithm for the general linear programming problem, even though some
interesting expected values of certain parameters of random polytopes
are derived. It turns out that for many parameters, like numbers of
faces of any dimension, probability of a polytope being nonempty,
probability of a polytope being unbounded and more, the weak model
we have described suffices for determining the exact average value
of the parameter. However, this is not the case with respect to the
average number of steps performed by the self-dual algorithm, as we
argue later.

It is interesting to mention that the number of symmetries cannot
be subexponential if we are to prove a polynomial upper bound on
the average number of steps, since in the worst-case the number is
exponential.

The stronger model, under which we are able to prove the
lower bound result, requires that all the entries of A™ (except for
A +1,n+1) be independent, identically distributed random variates,
whose common distribution is symmetric about the origin. We believe
that a weaker model would suffice for the same result, but may on the
other hand be cumbersome to state.

3. The algorithm. We now cxplain the sclf-dual method. Consider
the following linear programming problem:

Maximize Tz

subjectto Az <b
z2>0 ,

(where z,¢c € R®, A€ R™*" and b € R™). The dual problem is
the following
Minimize yTb
subjectto yTA > T
y20
The complementary slackness conditions state that two vectors, z (such

that Az < b and = > 0) and y (such that yTA > ¢T and y > 0)
are optimal (for their respective problems) if and only if

yT(Az—b) =0

and
wrA—cT)z =0
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Letting

AT

—A

L J

and g = (—c, b)7, the problem amounts to finding two vectors z and
w in R™*™ such that
—Mz4+w=gq, 2Tw=0 and zuw >0.
A useful observation can be made in terms of a piecewise linear
mapping
F:Rpmt" , gmin

where
F{z) = —Mzt — 2z,

Here, zt plays the role of z, whereas —z— plays the role of w.
Solving the primal and the dual problems amounts to finding an
inverse image F—(g).

The self-dual algorithm starts from any positive vector go and at-
tempts to find solutions for every point on the line scgment determined
by qo and ¢. Thus, it looks at points of the form (1 — t)go + tq. For
t = 0 there is an obvious solution, namely,

z=0 and w=gqp

The algorithm increases the value of ¢ continuously, and follows the
inverse image of the point (1 —t)go+tq under the mapping F'. While
the inverse image stays within an orthant of R™*" it varies linearly
therein. Every orthant is represented by a pre-basis, namely, a set of
vectors {b!,---,b™ "} C R™¥" where b* is equal either to the
i-th column of — M or to the -th unit vector e'. A pre-basis whose
vectors are linearly independent is called a basis. We identify a basis
with an (m -+ n} X (m + n)-matrix B whose columns are the vectors
of the basis. A necessary condition for a pre-basis B to be a basis
is that equal numbers of unit vectors from the sets {e!,---,e™} and
{et*™,.-.,e™* "} are not in B. Under the regularity assumption
stated in Section 2 (which holds with probability one whenever the
matrix A is sampled from a continuous distribution) this condition is
also sufficient.

It is well-known that the self-dual method solves the linear program-
ming problem under the non-degeneracy assumptions; the algorithm
reaches the point g if and only if the linear programming problem
has an optimal solution. Otherwise, it discovers that the problem is
either infeasible, or feasible but unbounded (in which case it finds a
feasible ray on which the function ¢z tends to infinity). The number
of pivot steps performed by the algorithm is equal to the number of
bases occurring in the path-following process, minus one. A basis B
occurs in the process if and only if for some t (0 <t < 1),

B ' (1—t)go+tg) = O

We note that the algorithm itself is deterministic, so that all the
probabilistic statements regard the distribution from which the instance
(A, b, ¢) is taken. Denoting by Pr(B) the probability that the basis B
occurs in the process, we note that the expected number, p(m, n; go),
of pivot steps corresponding to the starting point qo, is



p(m,n;q0) = Z Pr(B)—1
B

An alternative way to represent p(m,n;qo) (called the “facet form”
in Smale’s papers) is as follows. First, define an artificial basis to be
a matrix By; obtained from a basis B by replacing its i-th column by
the column —go. Let Pr(B;) denote the probability that ¢ is in the
cone spanned by the columns of By;. Under thesc conditions,

p(m,n; o) = Y Pr(By;)
Ba

We will cstimate the probabilities Pr(B/).

It turns out that the exact value of p(m, n; go) depends on the par-
ticular distribution and may not be the same for different distributions
which satisfy our conditions. The precise value also scems difficult to
cvaluate. However, for vectors of the form gg = (1,¢,€2,---), the
limits of p(m, n; o) (as € tends to zero) are close for many distribu-
tions, and morcover, they are much casicr to cstimate. We note that
for a fixed distribution the limit of p(m,n; ) docs not necessarily
equal the expected number relative to the limit of the starting points,
that is p(m, n; e!).

It is very important at this point to clarify the issuc of the value of
€. For any fixed value of ¢, the algorithm is well-defined (subject to
nondegeneracy). The progress of the algorithm, that is, the sequence
of bases that it produces, depends of course on e. Obviously, there
are only a finite number of intervals of e-values such that over each
interval, the algorithm produces the same sequence of bases. The
latter follows from the fact that the progress depends on comparisons
between polynomials of bounded degree in €. It follows that there is
€g > 0 such that for all €, 0 < € < ¢, the progress of the algorithm
is the same. The actual choice of ¢ does not have to be made in
advance. In fact, the value of ¢ can be determined by the algorithm
itself.

The question of what is the best starting point is still open for the
average linear programming problem. However, we know that for the
average linear complementarity problem, the point (1, ---,1)7 is the
worst, while (1,¢,€2,---)T is best in the positive orthant [Me2]. The
effect of the starting point is much easier to study in the context of
the linear complementarity problem (see [Me2]).

4. Four types of artificial bases. There are four types of artificial
bases, By, depending on the kind of the column of the basis which
is replaced by —go: (i) A unit column representing a dual-slack.
(i) A unit column representing a primal-slack. (iii) A column of
M representing a dual-variable. (iv) A column of M representing a
primal-variable. We note that these four cases may be viewed as two
pairs of symmetric ones via the primal-dual symmetry. However, the
vector gg is not symmetric in this respect. We will henceforth assume
that go = (1,¢,€%,--+,e™ 1T It is interesting to mention at
this point that a different assignment of powers, depending on whether
m < n or vice versa, yields a slightly better bound when the larger
dimension tends to infinity, while the other one is fixed. This point
will be discussed later. Notice that the first n columns of a basis
correspond either to primal-variables or to dual-slacks, whereas the
last m columns correspond to either dual-variables or primal-slacks.
It is also convenient to assume, without loss of generality, that m <
n. However, when we represent an artificial basis by an (m + n) X
{m + n)-matrix Bj,, we usually change the order of columns and
rows so as to exhibit how a solution to the lincar system Bz = ¢
is obtained. Specifically, we find it convenient to rearrange the matrix
so that it has an identity submatrix in the upper left-hand corner. For
example, an artificial basis of type (i) can be represented by a matrix
of the form

315

Z

Imtn—2k—1 i

w
M = —q0 '
yT
X
-XT
I ]

where X € R¥*k Z ¢ Rin—k—1)xk W c Rm—KIXk and y €
RF, (0 € k < min(m,n — 1)). It is very essential to understand
at this point what powers of € can arise in the different rows of
this matrix. To that end, observe that the rows of Z and the rows
of X, together with y7, constitute segments of the first n rows of
the matrix M. Hence the components of qg corresponding to these
rows are powers € where 0 < j < n— 1. On the other hand, in
rows corresponding to W and —X7T we find in go powers ¢/ with
n<j<m4+n—1 :

We now describe briefly the other three types of artificial bases.
The second type of matrices is of the form

VA
Intn—2k—1
w
M, = —4qo f
X
—XT
T
| LA

where X € RFXk g ¢ RIn—KIXk W ¢ Rm—k—1)Xk ap4 y €
RF, (0 < k < m—1 < n—1), Here the components of gg,
corresponding to the rows of Z and X, are the powers ¢’ with 0 <
J < n—1, whereas the ones corresponding to the rows of W, —X7
andyarethose withn < j<m+$n—1.

The third type of matrices is of the form

Z
Lngn—2k
Mg = r(ﬂ) w )
X
yT
X7



where X € R¥X(k—1) 7 ¢ Rn—k)X(k—1) 1 e pim—k)xk
YERF,(1<k<m<n)

The fourth type of matrices is of the form

and

Z
Imn—2k
My = | w ,
T
X
| xT

where X € R(k—l)xk, Ze R(n—k)xk, We R(m—k)x(lc—l) and
YyER, 1 <k<m<n)

For each of the four types we will estimate the probability that, when
the vector ¢ is represented as a linear combination of the columns of
M;, all the coefficients are nonnegative. It turns out that types (i) and
(iii) are very similar in this respect, whereas types (ii) and (iv) are very
similar to each other but different from (i) and (iii). The reason will
become transparent later.

5. Upper bounds for types (i) and (jii). In the present section we
estimate the limit of the probability Pr(B/;) as € tends to zero, where
By, is an artificial basis of type (i) (See the matrix My in Section 3).
We then estimate the expected number of bases of type (i) that occur
in the solution process. The analysis of type (iii) is essentially the same
with a change of the value of one index as we show later. For any
k X k-matrix A, let p(A) denote the probability that a random unit k-
vector v, sampled from a continuous distribution over the unit sphere
in R*, is in the cone spanned by the columns of A. Obviously, if A
is singular then p(A) = 0. It is interesting to observe the following.
Suppose that A', A%, ... is a sequence of k X k-matrices, converging
to a matrix A%, If A is non-singular then lim p(4A™) = p(A4%). On
the other hand, in case A® is singular then p{A®) = 0, but lim p(A™)
may be positive. Many of our matrices converge to singular matrices
when ¢ tends to zero, but we can still estimate the (positive) limit of
their probabilities p(A™). We note that our estimates are valid under
a model much weaker than that described in the present paragraph,
and the spherical symmetry is not required.

Our assumptions about the distribution imply that the components
of the vector ¢ are non-zeros, and all the 2™+ possible sign patterns
have the same probability. In other words, ¢ belongs to any orthant
of R™+™ with the same probability of 2—(™+7).  Consider the
linear system M,z = q. It is casy to see that the cocfficients of
the last 2k + 1 columns of M; (in a representation of g as a linear
combination of the columns of M) arc determined by a smaller
system of equations. Let

yT

X
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(M] € RBkHDX@k+1)y yhere g is the restriction of gp to the
components corresponding to the rows of X, —X7T and y. Now
consider the system

M1(>‘:a: :B)T = q'y

where ¢ is the restriction of g to the rows described above, X is a real
number and a and f§ are k-vectors. Obviously, the vector (\, &, B)7
consists of the coefficients of the last 2k 4 1 columns of M; in a
representation of g as a linear combination of the columns of Mj.
We will estimate the probability that (\, a, 8)T > 0. First, we prove
a fundamental lemma.

Lemma L. Let Y € REFVUXKH) gnd o w € R*.  Denote
by Y* a(k+2) X (k + 1)-matrix such that Y=Y, 6=
Lokt Lj=1k+ Y, p,=u;(G=1-,k)
and Y, +2,k4+1 = 0. Assume that Y* satisfies the assumptions
of our model, that is, every submatrix of Y (except for the entry
Y, +2,k+1/ is non-singular, and the distribution from which Y*
is picked is invariant under multiplication of columns and rows
by —1. Let X € R*** be the submatrix obtained from Y by
deleting the last row and the last column. Also, let i, 1 < i <
k + 1, be fixed. Under these conditions, the probability that the
unit vector €* is in the cone spanned by the columns of Y, while
uT is in the cone spanned by the rows of X, is equal to 2~ (@5+1),

» Proof: Forany S C {1,--+,k+1} and any matrix D, denote by
SD a matrix obtained from D by multiplying each row of D, whose
index is in S, by —1. Similarly, let DS denote a matrix obtained from
D by multiplying each column of D, whose index is in S, by —1.
Thus, the objects SY,Y'S. SX, X S, Se* and 4TS are well-defined.
Let T C {1,---,k} be any subset such that ¢ ¢ T. Now, consider
events as follows. Let Eg denote the event in which e* is in the cone
spanned by the columns of Y'S, and let Fir denote the event in which
4T is in the cone spanned by the rows of TX. Obviously, Eg occurs
if and only if Te® is in the conc spanned by TY'S, and Fr occurs
if and only if 4TS is in the cone spanned by the rows of TX S. It
is casy to sce that Sy # S, implics Pr(Eg, (1 Es,) = 0 and T} #
T, implies Pr(Fr, (Y Fr,) = 0. By our symmetry assumptions, it
follows that the quadruple (TY S, TX S, Te*, u” S) has the same joint
distribution as the quadruple (Y, X, ¢*,uT). (Recall that i ¢ T). Let
Gsr = Es() Fr and consider the union of the events Gsr (S C
{1,--,k+1}, T C {1,---,k}, 1 &T). We have alrcady argued
that these events have the same probability. Moreover, the intersection
of any two of them is cmpty by the non-singularity assumption or,
alternately, measures zero under any continuous distribution. If ¢ =
k 4 1 then the union is the entire sample-space. In this case, we
have 22541 events and the probability of each is hence 2—@%+1),
Otherwise (i < k), we have only 22% events. On the other hand, the
union of these events is not the entire space. In fact, the union is the
event in which the coefficient of the i-th row of X, in a representation
of uT as a linear combination of the rows of X, is nonncgative. The
probability of this event is obviously 4. Thus, the probability in this
case is, again, 2~ (@F+1), 4

As a result we get the following:

Lemma 2. The probability that the last 2k + 1 coefficients, \, o and
B, are nonnegative tends 10 2~ @%+1), a5 ¢ tends to zero.

» Proof As a matter of fact, the values of X and « are determined
by a smaller system, corresponding to the square submatrix of order
(k + 1) X (k+ 1) in the upper left-hand corner of M, consisting
of X, y and a portion of —gqq. It follows by arguments similar to
those of Lemma 1, that the probability that X and « are nonnegative
is 2—(+1)_ Furthermore, the asymptotic behavior of A (as € tends to



zero) depends only on the smallest power of ¢, in the portion of gg
corresponding to rows of X and y. The latter follows from Cramer’s
formula for the solution of linear equations, under the assumption that
the minor, corresponding to this power of €, does not vanish. Let j
denote this smallest power (0 < j < n—1) and assume X, y and ¢
have been fixed. Then, X is asymptotically proportional to ¢—7. This
enables us to estimate the probability that also § is nonnegative.

Let ¢? and qg denote, respectively, the portions of ¢ and gp
corresponding to the rows of —X T, It is easy to see that

B=(=XT)""(¢® + Mf)

Recall that all the €''s participating in qg are with 2 > n. It
follows that for any fixed data, )\qg tends to zero with e. Thus,
the probability that § is nonnegative tends to the probability that
(—Xx 7‘)“q" is nonnegative. ‘The latter is obviously equal to 2k,
However, we have to cvaluate the intersection of the events “\ and
o are nonnegative” and “f is nonnegative.” A priori, these are
not known to be independent, since both depend on the matrix X.
However, it is a direct consequence of Lemma 1 that these events are
asymptotically independent, and the probability of their intersection
tends to 2~ k1) 4

Lemma 3. Let My be an artificial basis of type (i) and let j be
the largest index such e',---,e! belong to My. Under these
conditions, Pr(M,) < 2~ (m+n—1),

» Proof: For the proof we need. to consider the rest of the
cocflicients, that is, those of the m 4 n — 2k — 1 unit vectors. These
unit vectors can be classified as primal-slacks and dual-slacks. A dual-
slack has a unity in a row in which gg has an ¢* with0 < i < n—1,
whereas a primal-slack has a unity in a row in which g has an €
with n € ¢ < m + n — 1. Note that, by the definition of the
index j, the smallest power of €, in the portion of g corresponding
to X and y, is precisely ¢ (since €' corresponds to €*—!), Consider
a primal-slack €' (n +1 < i < m + n). Let W; denote the row of
W corresponding to the unity of the primal slack, and let ¢; denote
the component of ¢ in that row. Obviously, the coefficient of €' is
gi — Wia 4 e, Since 1 — 1 > 7, it follows that Ae*—? tends
to zero with . Thus, the probability that the coefficient of €' is
nonnegative tends to the probability that ¢; — W;o is nonnegative.
Consider the 2™—* different ways of multiplying rows of W, each
augmented with the corresponding coordinate from ¢, by —1. It
follows that the probability that the coefficients of the primal-slacks
are all nonnegative is equal to 2~ (m—k), '

Now, consider the dual-slacks, that is, unit vectors e* with 1 < i
n. The arguments here are similar to those of the previous case, except
that ¢ — 1 may now be smaller that j. In such a case, the probability
that the coefficient of € is nonnegative (given that \ is positive) tends
to one, since Ae* ! tends to infinity. If, on the other hand, i —1 > j
then the probability that the coefficient of €' is nonnegative tends to
4. We can now summarize our findings about the probability that
all the cocfficients are nonncgative. Each ¢ with ¢ > j contributes a
factor of }, while every other €' contributes a factor of 1. The limit
of the probability thus depends only on the value of j, and is equal
to 2~ (mtn—i), 4

Corollary 4. The expected number of bases of type (i) occurring in

the solution process is less than % + 1.

» Progf: The number of artificial bases of type (i), containing
the unit vectors e!,---, ¢’ and not containing e’*1!, is calculated
as follows. For every k (k = 0,--.,min(m,n — j — 1)), we can
choose the k& dual-variables in (',':) ways. We can choose the k 4+ 1
dual-slacks to be dropped from the basis (and replaced by k primal-
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variables together with the column —gq) in (*™27") different ways,
since e/ +* must be dropped. Then, the particular choice of which of
these will actually be replaced by —go can be made in k-1 different
ways. To summarize, the number of such bases is

)

min(m,n—j—1) .
m\fn—j—
S e+r(T)("
k=0
It follows that the expected number of these bases occurring in the
solution process is

min('mz:.n—l) {(k i (7:)2_1" n—Zk—l (n - i — 1)2—-(n—j)}

k=0 7==0 )
min{m,n—1) n—1 ,.
— mY,—m—1 [V Yy—i
= Y {(k+1)(k)2 E(k)z } .
k=0 =k
Now, observe that for |z| < 1,
1 —
11—z = Z:oz .

and

= ikl(;)z‘_" s

1=k

d* (1 )_ k!
dz*\1—z/) (1 —g)k+!

so that for £ = § we obtain, for all &,

> ()

S =2
1=k k

It follows that for any n, the expected number of artificial bases of
type (i) occurring in the process is less than

2 Y (k+ 1)(':)2~"‘~1 = %4- 1
k=0

«

Corollary 5. The expected number of bases of type (iii) occurring in
the solution process is less than .

» Proof: The number of artificial bases of type (jii), containing the
unit vectors e!,---, e’ and not containing e’ +1 s

min(gt—i) k(rZ)(n ; J —1~ 1)
k=1 -

It follows that the expected number of these bases occurring in the
solution process is

SO gy

7=0

S )

from which it follows that the expected number of bases of type (iii)
is less than . «



6. Upper bounds for types (i) and (iv). The anlysis of types (ii)
and (iv) is slightly more complicated than that of types (i) and (iii).
This is due to the fact that, in the case of (ii) and (iv), the coefficient
X of the column —gqy is essentially determined by a row in which the
power of e is greater than n — 1, while smaller powers are present
in the submatrix in the lower right-hand corner of the matrix (See
Section 4). However, this situation can still be handled. We consider
type (ii) in detail. Type (iv) is then treated analogously.

Lemma 6. Let Y € R*+UX+1) pe g random matrix from a
distribution like in Lemma 1, that is, the distribution is invariant
under multiplication of rows and columns by —1, and every
submatrix of Y is non-singular. Let X € R*** be the submatrix
obtained from'Y by deleting the last row and the last column. Let
v € R¥1 be a unit vector with the unity in the first position and
let w € R* be a unit vector with the unity in the first position.
Under these conditions, the probability that v is in the cone spanned
by the columns of Y, and —uT is the cone spanned by the rows
of X, is not greater than 22k,

» Proof: We use the notation of Lemma 1, so that the objects SY,
YS,8X,XS, Svand uTS are well-defined. For S C {2,---,k+
1} and T C {2,---,k}, consider events as follows. Let Eg denote
the event in which v is in the cone spanned by the columns of
Y S, and let Fr denote the event in which —uT is in the cone
spanned by the rows of TX. Obviously, Eg occurs if and only if
Twv is in the cone spanned by TY S, and Fr occurs if and only if
—uT§ is in the cone spanned by the rows of TX S. It is easy to
see that S; % S, implies Pr(Es, (1 Es,) = 0 and Ty # T, implies
Pr(Fr, (\ Fr,) = 0. By our symmetry assumptions, it follows that the
quadruple (TY S, TX S, Tv, —uTS) has the same joint distibution
as the quadruple (Y,X,v,—u”). (Recall that 1 ¢ SUT). Let
Gsr = Eg () Fr and consider the union of the events Ggr (S C
{2,---,k+1}, T C {2,--+,k}). We have already argued that these
events have the same probability and, moreover, the intersection of
any two of them measures zero. The union of these events is the
intersection of the following two events. First is the event in which
the coefficient, ¢y, of the first row of X, in a representation of —uT
as a linear combination of the rows of X, is nonnegative. Second is
the event in which the coefficient, ¢,, of the first column of Y, in
a representation of v as a linear combination of the columns of Y,
is nonnegative. The probability of this intersection is of course not
greater than the probability of each of the events which is equal to
4. Since this is a union of 22¥—! equally probable events, Ggr, it
follows that each Ggr has a probability not greater than 272, «

It is interesting to point out that our weak model does not allow
us to prove a stronger result. Consider the case of ¥ = 1 with
the matrix Y sampled uniformly from the cquivalence-class of the
following matrix:

i i
11 °

that is, Y can be obtaincd from this matrix by arbitrary multiplications
of rows and columns by —1. It follows that the cocfficients ¢,, and ¢,
have the same sign for any Y in the class, and the probability that both
are positive is 4. Under stronger models (sce Section 7) the events
are negatively correlated, so that the probability of the intersection is
less than . For example, if Y is a 2 X 2-matrix whose four entries
are sampled independently from the same symmetric (about the zero)
distribution, then it follows that the probability of both ¢, and c,
being positive is precisely %;. We elaborate on these issues in Section
7.
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Lemma 7. Let My be an artificial basis of type (ii). Let i be an
index such that unit vectors e',-- -, e* are in the basis, while ¢*+}
is not. Similarly, let 3 be the index such that the unit vectors
et ... emtI are in the basis while e" I+ s not. Under
these conditions, the probability that My occurs in the solution
process, lends lo a limit not greater than 2~ (m+n—i—j—1)

» Proof: Let « € R* X and B € R* denote the coefficients of
the last 2k + 1 columns of My in a representation of a random
vector as a linear combination of the columns of M. Like in the
case of M, they are determined by a smaller system, corresponding
to the square submatrix, M}, of order (2k + 1) X (2k + 1) in the
lower right-hand comer of M. Actually, A and 8 are determined
by an even smaller submatrix in the lower right-hand corner of M ;,
consisting of —X T, y and a portion of —gg. By arguments similar
to those of Lemma 1, the probability that A and § are nonnegative
is 2—(*+1)_ Furthermore, the asymptotic behavior of X (as ¢ tends
to zero) depends only on the smallest power of €, in the portion
of go corresponding to rows of —X7T and y. The latter follows
from Cramer’s formula for the solution of linear equations, under the
assumption that the minor, corresponding to this power of €, does
not vanish. Our choice of indices implies that this power is precisely
€* 7. It follows that X is asymptotically proportional to e—(m+3),
This enables us to estimate the probability that ¢ is also nonnegative.

Let ¢* and g denote, respectively, the portions of ¢ and gg
corresponding to the rows of X. It is easy to see that

a=X"Yq* + \)

Recall that all the ¢'’s participating in ¢§ arc with i < n —1. It
follows that for any fixed data, each component of Ag§ tends to
infinity when € tends to zero. However, the direction of ¢* + Mg
simply tends to the direction of e*+?, since the smallest power of €
in that portion of gp is the onc that corresponds to this vector. Thus,
given that A\ and S are nonncgative, the probability that a is also
nonncgative tends to the probability that e*+! is in the cone spanned
by the columns of X. We arc under the conditions of Lemma 6, with
somc changes of indices. Actually, the case where the smallest power
of ¢, in the portion corresponding to —XT and y. occurs in the row
of y is not covered. However, this case can be handled analogously,
resulting in an even better bound, 2 2*+1 The conclusion in our

case is that the probability of X, 8 and « being nonnegative tends to
a limit not greater than 2—2*

We now need to consider the rest of the ccefficients, that is, those
of the m + n — 2k — 1 unit vectors, like in the proof of Lemma 3.
Consider a primal-slack ¢ (n + 1 < v < m + n). Let W,, denote
the row of W corresponding to the unity of the primal-slack and let
g, denote the component of ¢ in that row. Obviously, the coefficient
of e is g, — W, B+ 2e¥"L If v —1 > n+ 7, then \e¥~! tends
to zero with e. If v — 1 < n -} 7, then this probability tends to &

Consider a dual-slack, e with 1 < v < n. The arguments here
are similar to those of the previous case. It can be verified that
the order of magnitude of the coefficient of e¥ is e*—1—*. Thus, if
v—1 < 1 then the probability that this coefficient of e* is nonnegative
(given that X is positive) tends to one, while if v — 1 > 1 then this
probability tends to 4. We can now summarize our findings about
the probability that all the coefficients are nonnegative. Each € with
either i < ¥ < n—1 or v > j contributes a factor of §, while
every other €” contributes a factor of 1. The limit of the probability
is thus bounded from above by 2—(m+n—i—j—1) 4

Corollary 8. The expected number of bases of type (ii) occurring in
the solution process is not greater than m2 -+ m.



» Proof: Our calculations here are similar to those of Corollary 4.
The number of bases, with indices ¢ and j as defined in Lemma 7, is
(using the convention (_*,) =1 for i > —1),

min(m—i—1,n—j) m—i—1\n—j—1
k}___:o (k+1)( " )( k—l)

It follows that the expected number of these bases occurring in the
solution process is not greater than

zz((k + 1)m‘§k:_1 (m ;zci - 1)2_("‘_,‘)

=0
:Z;:: (n ;__’]_: 1)2_(7.—:'))
-1 Z::((k + 1)"'_;‘;‘,—: (,i)?“ ’;i; (k ? 1)2_j)'

It follows that for any n, the expected number of artificial bases of
type (ii) occurring in the process is not greater than

m—1
Y(kt)=mP+m . «
k=0
Corollary 9. The expected number of bases of type (iv) occurring in
the solution process is not greater than m* 4 m.

» Proof: The arguments are identical to those of the previous case.
The number of bases is

"“"‘"‘i""—” k(m —ie l)(n —i— 1)
= k—1 k—1

It follows that the upper-bound in the present case is

m m—k me—i—1 )
2 E(k > ( )2
k=1

= k—1
n—k .
E (n —J= 1)2—("—:1'))
= k—1
m .
<2 Z k = mi4+m . <
k=1

In view of the calculations made in this section and the preceding
one, it turns out that there is room for some improvement. First,
notice the following symmetries between types. Suppose we assign
the powers ¢ with 0 < j7 < m — 1 to the dual-variables, and those
with m < 7 < m+ n — 1 to the primal variables, and suppose we
interchange the roles of m and n. Under this transformation types
(i) and (ii) are symmetric and so are types (iii)} and (iv). Subject to
the original assignment of powers of ¢, types (i) and (iii) contribute
linear terms whereas types (ii) and (iv) contribute quadratic terms.
A quadratic term arises when there are two critical indices 7 and 7,
whereas a linear term arises when there is only one. More specifically,
the first critical index is the smallest power of ¢ which is present in
the section according to which the coefficient of go is determined.
This power is associated with a dual-variable or a primal-variable
(depending on the type) which is present in the basis. If it is associated
with a primal-variable, then the second critical power is the smallest
that corresponds to a dual-variable, which is present in the basis, and
vice versa. However, the second critical power plays its role as critical
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only if it is smaller than the first one. Given these observations, it
is now clear that any assignment of powers of € yields an algorithm
with a quadratic upper bound, since each of the types never gives
rise to a superquadratic term. On the other hand, there is room for
improvement in the linear term of the upper bound, in case one of
the dimensions is substantially larger than the other one, which can
be seen as follows.

Assume m < n and let us assign the powers ¢ with 0 < j <
m — 1 to the dual-variables, and those withm < j < m+4n—1to
the primal variables. It follows from our symmetry arguments that, in:
this case, type (i) contributes the number of steps contributed by type
(ii) subject to the original assignment, that is, no more than mi4m

steps. Similarly, type (iii) behaves like type (iv) did in the original
assignment. Of course, type (ii) also behaves like type (i) and type (iv)
behaves like type (iii). However, we are able to prove a better upper
bound for the latter two in case n tends to infinity. Consider type
(ii). Let ¢ denote the critical index, that is the first ¢ primal-slacks are
present in the basis, while the (7 4 1)-st one is not. Now the second
critical index is not critical at all. The number of bases of type (ii)

with critical index ¢ is
""i—l m—i—1\(n
("))
= k k

The probability of each to occur is 2—(m+n—%)_ Thus, the expected
number of bases type (ii) in this case is no more than

':;—:((k + 1)(:)2_"
iy

=0
“Elen @ E Q)
which is less than
':g:(k + -1)(:)2—"

The latter tends to zero when n tends to infinity while m is fixed. A
similar bound can be obtained for the expected number of bases of
type (iv). However, types (i) and (iii) contribute a quadratic expected
number of bases, so this improvement is not a major one.

7. The quadratic lower-bound. In this section we establish that
the expected number of steps is indeed quadratic in the minimum
of the two dimensions of the problem. To this end, it is of course
sufficient to show that the expected number of bases of type (ii) is
Q(min(m, n))?).

For the lower bound result we need a stronger probabilisitic model.
A convenient model is as follows. We simply assume the entries of
A, b and ¢ to be independent, identically distributed random variates,
with a common distribution which is symmetric about the origin.
This assumption strengthens the symmetry under reflection conditions
assumed earlier in this paper. We also assume non-singularites as
before.

The following lemma complements Lemma 6, under the stronger
model.

Lemma 10. Let Y € REFDXGEH1) pe g matrix whose entries are
independent identically distributed random variates whose common



distribution is symmetric about the origin. Also, assume all the
minors of Y to be non-zero.. Let X € R*** pe the submatrix
obtained from 'Y by deleting the last row and the last column. Let
v € R¥+1 be a unit vector with the unity in the first position and
let u € R* be a unit vector with the unity in the first position.
Under these conditions, the probability that v is in the cone spanned
by the columns of Y, and —uT is the cone spanned by the rows
of X, is between 2—2%—2 gpd 2—2k—1,

For the proof of Lemma 10 we neced several preparatory lemmas.
The first is a fact of linear algebra.

Lemma 11. Let Y € R+DX(+1) any matrix and denote
submatrices of Y as follows.

(i) Let X € R*** pe the upper lefi-hand corner submatrix of Y.
(ii) Let Z € R*** be the lower lefi-hand corner submatrix of Y.
(iii) Leae W € R"_’< % be the upper right-hand corner submatrix of Y;
(iv) Let V € R¥** pe the lower right-hand corner submatrix of Y.

(W) Let U € RE=UXE—1) po the center submatrix of Y (obtained
by deleting both the first and the last row and both the first and the last
column).

Under these conditions,

det(Y) det(U) = det(X) det(V) — det(Z) det(W)

» Proof: We prove the lemma by induction on k. In the inductive
step the value of k decreases by fwo units. It is easy to verify that the
lemma is true for k = 1,2.

To simplify the proof, note that each of the products det(Y’) det(U),
det{X) det(V) and det(Z) det(W) is a bilinear form in terms of the
first row and the last row of Y. It is thercfore sufficient to prove
the lemma for matrices Y, both of whose first row and last rows
are unit-vectors. Suppose Y3; = 1 and Yy, = 0 for every [ # ¢
(¢=1,---k-1), and also Yx41,; = 1 and Yi41,1 = 0 for every
l5# 7 (I =1,---k+1). The cases of when either ¢ or 7 are equal to
either 1 or k + 1 are obvious. So is the case of 1 = j. Thus, we are
left with the case of 2 < 1,7 < k+ 1 and ¢ 7% j. Without loss of
generality we may assume ¢ == 2 and § = k (assuming k > 3.) Let
A(1, 7) denote the minor of Y obtained by deleting the first row and
the last row, together with columns ¢ and j. Under these conditions
we have

det(X) = —A(2,k+1) ,

det{V) = —A(L, k) ,
det{W) = A(1,2) ,
det(Z) = A(k,k+1) ,
det(U) = A(1,k+ 1)
and det(Y) = A(2, k)
All we need to prove now is the following equality:

A2, K)A(L k4 1) = A(1, k)A(2, k + 1) — A(1,2)A(k, k+1) .

We can now apply similar arguments and reduce this equality to
an equality of the form of claimed in the lemma, but with & — 2
replacing k. Note that each of the products A(2, k)A(1, k + 1),
A(1,k)A(2,k + 1) and A(1,2)A(k,k + 1) is a bilinear form in
terms of the first column and last column of Y (more precisely, the
submatrix obtained from Y by deleting its first and last rows. Thus, we
may assume these columns to be unit vectors. Furthermore, we may
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assume without loss of generality, that the unity in the first column is
the second position, while the unity in the last column is in the k-th
position.

Our matrices are now reduced as follows. We delete from the matrix
Y the rows with indices 1,2, k,k + 1 and the columns with same
indices. The matrix so obtained has the same determinant as Y and
actually plays the role of U when the induction hypothesis is applied.
The old matrix U plays. the role of Y in the induction hypothesis.
Analogously, from the matrix X we delete the first two rows and
columns, from the matrix W we delete the first two rows and the last
two columns, from Z we delete the last two rows and the first two
columns, and from V' we delete the last two rows and columns. This
establishes our lemma. <«

The following lemma is again of lincar algebra.

Lemma 12. Let X € R*** be any matrix and denote a = X3,
a = (Xlg, .. ',Xlk)T and b = (le, .- ,Xkl)T. Also, let
U € RE—1XK—1) dopote the lower right-hand corner of X and
suppose U is non-singular. Under these conditions,

det(X) = det(U)(a —aTU'b) .
» Proof: The proof follows from the well-known formula for the
inverse in terms of the adjugate matrix, <«
The following is a simple probabilistic lemma.

Lemma 13. Suppose u and v are independent identically distributed
random n-vectors, and let C ¢ R™ be a random set (independent
of u and v) from any probability-space whose elementary events
are measurable subsets of R™. Under these conditions,

Pr({u,v} C C) > Pr{u € C)Pr(v € C)

» Proof: Obviously,

Pr(u € C) =Pr{v € C)

Denote by Pr* the probability of an event where C is fixed. It follows
that

Pr*({u,v} C C) = Pr*(u € C)Pr*(b € C) = (Pr*u € C))?

Let x4 denote the probability-measure corresponding to the sampling
of C. It follows that

Prl{,} € C) = [ Pre({u,0} C O
= /Pr*(u € C)Pr*{ve C)du

= /(Pr *(u € C))?du

+(freecon)

= (Pr(x € C))> =Pr(u € C)Pr(vEC). <

We now apply Lemmas 12 and 13 in a situation which involves
random matrices.

Lemma 14. Let Y € REFTVXEHD) bo g marrix whose entries are
independent, identically distributed random variates, such that their
common distribution is symmeltric about the origin. Let X, V, Z
and W be the four corner submatrices of Y of order k X k as
defined in Lemma 11. Under these conditions,



Pr(det(X)det(V)det(Z) det(W) > o) > %

» Proof: Let o, a, b and U be as in the previous lemmas, and
also denote § = Yl,k+1- N = Yk+1,1, § = Yk+1'k+1, c =
(Yet1,2s- ,Yk_H'k)T and d = (Yo,k41,* ,Yk,k_H)T. 1t follows
from Lemma 12 that the product of the four determinants is equal to
(det(U))* times

(a—aTUT'B)(B — aTUd)(y — TUTB)(6 — TUd)

so it is sufficient to consider the sign of the latter. We now apply
Lemma 12. Let u = (Yi1,-++,Y1,k41)7, that is, u = (e, a7, §)7,
and v = (Yep1,1,-++, Yo 1,k41)7» that is, v = (7,¢7,6)7. Given
the values of Yy; fori = 2,---,kand j = 1,---,k+1, let C denote
the set of all vectors (e, a7, §)7 such that

(¢ —aTUT) (B —a"U~1d) >0
We note that also
(v—=TUTWB) (6 —cTUT) > 0
if and only if (7, ¢T,6)T € C. Let C¢ denote the complement of C

and note that under our model all the determinants are non-zero with
probability 1. Thus,

Pr(det(X)det(V) de;t(Z) det(W) > o) |
=Pr ({ det(X) det(W) > 0} () { det(V)det(2) > o})
+Pr ({ det(X) det(W) < 0} () {det(V)det(2) < 0 })
= Pr({u, v} C c) + Pr({u, v} C c=)

> (Pr we C))2 + (Pr (we cc))2 > %

<

We now return to questions which are more closely related to the
ones we were dealing with in the previous sections. The following
lemma constitutes the essence of Lemma 10.

Lemma 15. Let Y, X, u and v be as in Lemma 10. Let ¢, denote
the coefficient of the first row of X in a representation of —uT
as a linear combination of the rows of X, and let ¢, denote the
coefficient of the first column of Y in a representation of v as a
linear combination of the columns of Y. Under these conditions,
the probability that both ¢, and c, are positive is between } and

» Proofs Let U, V, W and Z be as in the previous lemmas.
Obviously, '

o = — det(U)
T det(X)
and
o = det(V)
Y7 det(Y)
We are interested in the event E in which
det(V) 0> det(U)
det{Y) det(X)

First, note that when the first row of Y is multiplied by —1 then

the signs of ¢y, and ¢, are reversed. Since the distribution of Y is
invariant under this operation, it follows that

PH{E) = % Pr( det(X) det(V) det(Y) det(U) < o)
However, by Lemma 11,
det(Y) det(U) = det(X)det(V) — det(Z) det(W) .

Consider the random variates £ = det(X)det(V) and n =:
det(Z)det{W). Obviously, £ and n are identically distributed.

Moreover, their common distribution is symmetric about the origin,

since they change sign when the first column of Y is multiplied by
—1. It follows that

Pr(E)=§(Pr{77 <ELSO0}+Pr{n>€> 0})
=Pl‘(?7 <¢é< 0)

=Pr({n < }(J{e < ®})
Pr(n<€ | {n<0}\{e<0})
P
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This establishes the upper-bounding part of our lemma.
On the other hand,

1
Pr({n < 0}){€ <0})=Pr{nt >0} ,
so, in view of Lemma 14, we also have

Pr{E)=Pr{n < £ <0}

=3 Pr{ne >0} Pr(n <€ | {n<0}N{e<0})
1

1
= JPr{n€>0}2¢

|

We are now able to prove Lemma 10.

» Proof of Lemma 10: The proof follows directly from Lemmas 6
and 15. By Lemma 15, the union of the events Ggr has probability
between 4 and . Since these are 22% equally probable events (and
the intersection of every two of them measures zero), it follows that
each has probability between 2~2¥—2 and 2—2¥—3_ This completes
the proof of Lemma 10. «

We now have a result stronger than that of Lemma 7.

Corollary 16. Under the conditions of Lemma 7, subject to a
model in which the inputs are independent identically distributed
random variates (symmetric about the origin), the probability

that My occurs in the solution process tends to a limit beiween
2—(m+ﬂ""-—j+l) and 2—("‘+"'—“"‘j).

» Prooft The proof is essentially the same as that of Lemma 7,
taking advantage of the result of Lemma 10. <«

Before stating the lower-bound result, we need a combinatorial
lemma.



Lemma 17. For every k, k = 1,2, ..,

(-

» Proof: The proof goes by induction on k. The lemma is obviously
true for k¥ = 1. The inductive step is as follows

2k

2

1=k

2k+2 i 2k4-2 i — 1 2k+2 . )
i
¢=;4-1(k+ 1) i=zk-:+-1 k i= Zk—:{—z k+1
2k+l 1 2k+1 ]
SR (L
J;c ( ) 2 J'-——-kz—f»l k+1
_Z()ﬂ+(%+32mm
=k
+1 23‘12 ( Y )2—: (2"+2)2~(2k+2)
2,44 \k+1 k+1
Notice that

2k+1\ _ 12k +2
k T 2\k+4+1
The rest of the proof follows easily. «

Finally, we can prove a quadratic lower bound on the expected
number of bases of type (ii) occurring in the solution process.

Theorem 18. The expected number of bases of type (ii) occurring in
the solution process grows gquadratically with m.

» Proof: We rely on figures obtained in Corollary 8 and the lemmas
of the present section. The number of bases, with indices 7 and j as

defined in Lemma 7, is
m—i—1\n—7—1
("7 TN

By Lemma 16, the probability of a basis of this type to occur in the
process is at least 2~ (m+n—s—3+1) It follows that the expected

number of these bases occuring in the process is at least
m-—l
5> ((k +1 3

( e 1)2_("‘_‘)
k-l =0

n—k
(i 1)2—0-—:‘))
: k—1

=0

min(m—i—1,n—j)

k=0

m—k—1

_1 z(k+l)"§( )2—-’;(,611)2-:—)

The latter is greater than

E b0

2k—2

2

,.=k_1(z)z-f}

k=1

1 il 1 1
= - - <
8 k2=1 (k+1) > 64 —lsm

We have not attempted to maximize the cocfficient of m? in our

lower-bound for the expected total number of steps of the algorithm.
The latter is obviously larger than g since we also have the bases of
type (iv) contributing a similar term. Also, we were quite generous in
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the proof, especially in taking the sum only up to k = | m51],

8. Conclusion. We have estimated the expected number of artificial
bases occuring in the solution process. It is interesting to mention that
the self-dual algorithm can actually be implemented with only a half
of the number of pivot-steps as we describe them in this paper. This
is due to the fact that every second orthant of R™+™ which is met by
the inverse image of the line segment [gg, g}, corresponds to a singular
pre-basis (see Section 3). While the inverse image is crossing such an
orthant, the point in the image space does not move at all. Subject to
this observation, the expected number of steps, as we have estimated
it in this paper, is bounded from above by

m?+1.5m<405

(assuming m < n). A better bound is obtained if the smaller
exponents of € are assigned to the problem with the fewer variables
(see Section 5). The result is that asymptotically, when n tends to
infinity while m is fixed, the average number of steps is bounded from
above by
m?+m

but the previous bound prevails for any m and n. Under the stronger
model of Section 7 the probabilitics corresponding to types (ii) and
(iv) are multiplied by 4. This implics a uniform bound of

05m? +15m 405 ,

decreasing to
0.5m2 4+ 0.5m

as n tends to infinity. On the other hand the expected number of steps
is bounded from below by grm? — fm. This lower can obviously
be improved upon (since it is basced on type (ii) only), but we have
not attempted to do so in the present paper.

We finally note that the conditional expectation of the number of
steps, given that the problem has an optimal solution, can now be
bounded from above by a low-order polynomial in the case usually
considered most difficult, that is m = n. The probability that the

problem has an optimal solution is

("
m

(see [A]). In case m = n this is of order m—%. Thus, the conditional
expectation of the number of steps in this case is O(m?%). Also,
an obvious consequence of our result is that the probability that the
algorithm will require an exponential number of steps is exponentially
decreasing to zero. However, we expect a stronger result to be obtained
by a more careful look into the distribution of the number of steps.
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