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We describe a primal-dual interior point algorithm for convex quadratic programming problems 
which requires a total of O(~/nL) number of iterations, where L is the input size. Each iteration 
updates a penalty parameter and finds an approximate Newton direction associated with the 
Karush-Kuhn-Tucker system of equations which characterizes a solution of the logarithmic barrier 
function problem. The algorithm is based on the path following idea. The total number of arithmetic 
operations is shown to be of the order of O(n3L). 
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1. Introduction 

In Part 1 of  this paper, we introduce an interior path following primal-dual algorithm 

for linear programming problems which requires a total of O(x/nL) interations, 

where L is the input size, and each iteration can be executed in O(n 3) arithmetic 

operations. The purpose of the second part is to extend these results in two directions. 

First, we modify the algorithm in Part I in order to solve convex quadratic program- 
ming problems. Second, we reduce the work per iteration to an amortized complexity 
of O(n 25) arithmetic operations. As a consequence, we obtain an algorithm for 

convex quadratic programming problems (and hence for linear programming prob- 

lems) whose total complexity is O(n3L)  arithmetic operations. 

Quadratic programming (QP) problems share many of the combinatorial proper- 

ties of linear programming (LP) problems. Based on these properties, algorithms 

extending the simplex method have been devised to solve QP problems. However, 
in the worst case, these algorithms may converge in an exponential number of steps. 

Polynomial-time algorithms for convex quadratic programming problems based 

on the ellipsoid method were presented by Kozlov, Tarasov and Khachiyan [5]. 

Recently, with the advent of the new interior point algorithm by Karmarkar 

[3] for solving LP problems, some attention has been devoted to study classes of 

problems that can be solved by interior point algorithms in polynomial time. Kapoor 

and Vaidya [2] and Ye and Tse [10] present interior point algorithms for solving 
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convex QP problems based on Karmarkar ' s  projective transformation. Their 
algorithms are shown to converge in at most O(nL) iterations, with total complexities 
of  O((log n)(log L)n367L) and O(n4L 3) arithmetic operations respectively. 

This part is organized as follows. In Section 2, we base our discussion on the 
theoretical background for the interior path following algorithm provided in Part 
I. We briefly add the necessary extension for convex quadratic programming prob- 

lems. In Section 3, we describe the algorithm. We motivate and introduce the use 
of  approximate directions to reduce the average effort per iteration. In Section 4, 
we prove the convergence of the algorithm presented in Section 3. Although the 
general ideas of the proofs are similar to those presented in Part I, their details are 

more involved due to the approximation scheme and the introduction of a quadratic 
component  in the objective function of the problem. We also show how to compute 
an exact solution once we have found a sufficiently accurate feasible solution. In 
Section 5, we show how the approximation scheme reduces the average effort per 
iteration. In Section 6, we present an initialization similar to the one presented in 
Part 1, but with detailed proofs which are omitted in Part I. We finally conclude 

with some remarks. 
Since Part I and I I  share the same basic ideas, we found it necessary, for the 

sake of completeness and simplicity, to include a certain level of  redundancy in the 

arguments. 

2. Theoretical background 

In this section, we introduce the problem which will be the object of our study and 

then briefly review some duality results as well as the extensions of  the results 
presented in Section 2 of  Part I to the present context. 

We consider the convex quadratic programming problem as follows. Let 

(P) rain cTx+~xTQx 

s.t. A x  = b, 

x~>0, 

where c, x are n-vectors, b is an m-vector, A is an m x n matrix and Q is a symmetric 

positive semi-definite n x n matrix. We assume that the entries of  the vectors b, c 
and the matrices A and Q are integral. As for linear programming problems, we have 

Proposition 2.1. I f  problem (P) does not have an optimal solution then it must be 
either unbounded or infeasible. 

The Lagrangian dual problem corresponding to problem (P) is another quadratic 
programming problem given by 

(D) max - - ~ T Q ~ + b T y  

s.t. - - Q z , + A T y + z = c ,  

z~>0, 
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where v and z are n-vectors and y is an m-vector.  The relationship between problems 

(P) and (D) is provided by the following result known as the duality theorem for 

convex quadratic programming.  

Proposition 2.2. (a) I f  problem (P) is unbounded then problem (D) is infeasible. I f  
problem (D) is unbounded then problem (P) is infeasible. 

(b) I f  problem (P) has an optimal solution x ° then there exist yO and z ° such that 
the point (p, y, z) = (x °, yO, z o) is an optimal solution o f  problem (D). Conversely, if  
problem (D) has an optimal solution then problem (P) has an optimal solution. 
Moreover, the optimal values o f  both problems are identical 

The complementary  slackness condit ion for convex quadrat ic  p rogramming  prob- 

lems is as follows. 

Proposition 2.3. I f  x ° and ( u °, yO, z o) are optimal solutions for problems (P) and (D) 
respectively then (x°)Tz° = 0. Conversely, i f  ( v, y, z) = x °, yO, z o) is a feasible solution 
of  (D) such that x ° is feasible for (P) and (x°)Tz ° = 0, then x ° and (x °, yO, z o) are 
optimal solutions of  problems (P) and (D) respectively. 

We impose the following assumptions on the problems (P) and (D) (cf. Part I). 

Assumption 2.1. (a) The set S -= {x c R n ; A x  = b, x > 0} is non-empty.  
(b) The set T =- {(p, y, z) c Nn x Nm x ~ ;  - Q~, + ATy + z = c, z > 0} is non-empty.  

(c) rank(A)  = m. 

We say that points in the sets S and T are interior feasible solutions of  problems 

(P) and (D) respectively. 
We will briefly recall some notat ion already in t roduced in Part I and also introduce 

some new notat ion which is necessary for the present context. I f  x = (xl ,  . . . ,  xn) T 

is an n-vector, then the corresponding capital letter X denotes the diagonal  matrix 

diag(xt . . . . .  x,,). The lower case letters w and s will be used to denote  points 

(x, y, z) c ~n x ~ "  x ~" and (x, z) ~ R" x ~ respectively. Also ~_  will denote  the set 

o f  real n-vectors with all components  strictly positive. For  a real number  a > 0, we 

denote its logari thm to the natural base and to the base 2 by In a and log a 

respectively. I f  w ~ (x, y, z) ~ N" x N" x Nn t h e n f ( w )  denotes  the n-vector X Z e  where 
e denotes the vector o f  all ones. The definition of  the set W and the duality gap 

g(w) ,  for w c W needs to be reformulated in the present context as follows. 

W -= {(x, y, z); x ~ S, (x, y, z) e T}, 

g( w ) =- eTx + x r  Qx - b Vy. 

Observe that W is the set consisting of  the interior feasible solutions of  problem 
(D) such that  x is an interior feasible solution o f  problem (P). Note  also that  the 
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duality gap g(w) is the value of the objective function of (P) at x minus the value 
of the objective function of (D) at (x, y, z). 

As in Part I, the algorithm considered in this paper is motivated by the application 
of the logarithmic barrier function method to problem (P). The logarithmic barrier 
function method consists of examining the family of problems 

(P , )  min c T x + ½ x V Q x - t x  ~ lnxj 
.]~ 1 

s.t. A x  = b 

x > 0  

where # > 0 is the barrier penalty parameter. Similar to relation (2.1) of Part I, 
one can show that the global solution x of problem (P, ) ,  if it exists, is completely 
characterized by the following Karush-Kuhn-Tucker  stationary condition. 

Z X e  - Ixe = O, 

A x - b = O ,  x > 0 ,  (2.1) 

- -Qx  + A T y +  z - - c = O .  

Propositions 2.1 and 2.2 and Corollary 2.1 hold in the present context exactly as 
they are stated in Part I. We denote the unique solution of  system (2.1) (see Corollary 
2.1 of Part I) by w(/x) -= (x(/x), y(/z), z(/z)), in order to indicate its dependence on 
the penalty parameter/z  > 0. Also, we denote by F the set (path) of solutions w(/z), 
for /z  > 0. We refer to F as the central path associated with the convex QP problem 
(P). 

We conclude this section with the following observations which are easily shown 
(cf. Section 2 of Part I). 

( l)  w(/~) ~ W, for all ~ > O. Or in order words, the central path is entirely contained 
in the set W. Indeed, w c F  if, and only, if w e  W a n d f ( w ) = l x e ,  for s o m e / x > 0 .  

(2) g ( w )  = xWz for w ~ (x, y, z) c W. In view of this relation, we will always refer 
to the duality gap as the quantity xTz. 

(3) g(W(tZ))  = nlz for all /x > 0. Hence, the duality gap depends linearly on the 
parameter # for points in the central path F. 

Finally, we mention that Proposition 2.3 of Part I also holds for convex QP 
problem, if we replace (y(/x), z(/z)) by (x(/z), y(/x), z(/z)) [7]. 

3. The algorithm 

In this section, we describe an algorithm to solve the convex QP problem (P). The 
discussion in this section closely parallels the one presented in Section 3 of Part I. 
We start the description by discussing how the directions generated by the algorithm 
are computed. 
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Assume that a point w = (x, y, z) ~ W, which we call the current iterate, is given. 
In order to determine the next iterate, a vector of  direction Aw = (Ax, Ay, Az) 

~ n x  W"x  W' needs to be generated. As in Part I, we could define Aw to be the 
Newton direction associated with the Karush-Kuhn-Tucker  system of equations 

(2.1). However, with the objective of  improving the worst-case complexity on the 
number  of arithmetic operations, we consider a slight variation of the direction used 
in Part I. I f  we denote the left hand side of the system of equations (2.1) by 
H(w)  =- H(x ,  y, z), the Newton direction Aw at w c W is defined by the system of 
linear equations 

D~H(w)Aw = H(w)  

where aw = (Ax, Ay, Az) c ~" x ~m x ~ and DwH(w) denotes the Jacobian of H at 
w -= (x, y, z). Note that DwH(x, y, z) does not depend on the argument y c ~m. Indeed, 
the Jacobian of H at w -= (x, y, z) is given by 

J(x , z )=-D~,H(w)= A 0 . 
_Q  A T̀  

The direction Aw that we are going to consider is defined by the following system 
of linear equations 

J(~, S)Aw = h(x, y, z) 

where the points Y ~ R+ and z c  ~ +  will be chosen to approximate x ~ ~" and z c R" 
respectively in a manner which will be specified later. More specifically, Aw = 
(Ax, Ay, Az) is defined by the following system of linear equations 

f lax + f(Az = XZe  - 12e, (3.1.a) 

AAx =O, (3.1.b) 

- Q A x  + ATAy + Az = 0, (3.1.c) 

where /2 > 0 is some prespecified penalty parameter.  Note that the solution Aw = 
(Ax, Ay, Az) of the system of equations (3.1) clearly depends on the current iterate 
w = (x, y, z), on the Jacobian of H at the "approximat ion"  ~ = (~, Z) of  s = (x, z) 
and on the penalty parameter  f > 0. In order to indicate this dependence, we denote 
the solution Aw of system (3.1) by Aw(w, ~, f ) .  

By simple calculation, we obtain the following expressions for Ax and Ay: 

Ax = ( 2  + , ~ Q ) - ' [ I  - f ( a T ( A ( 2  + f;Q) ' f~AT) - lA(2  + X Q ) - ' ] ( X Z e  - fie), 

Ay = - [ ( A ( Z  + 2 Q  )-a f (A T)-~ A(  2 + 2 Q  )-~]( XZe  - re ) ,  

Az = QAx - A T Ay. 

Therefore, to calculate the direction Aw ~ (Ax, Ay, Az), the inverse of  the matrix 
A ( Z  + XQ) - IXAT = A ( X - 1 2  + Q)-1AV needs to be calculated. Note that the inverse 
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of this matrix exists due to the fact that the matrix Q is positive semidefinite and 
3~ and ,Z are positive definite. The main motivation for considering an approximation 

= (Y, Z) of  s = (x, z) is so that we do not need to invert this matrix from scratch 

at every iteration. I f  the current diagonal matrix X - 1 2  differs from the previous 
one by exactly l diagonal elements then, as described in Section 5, by performing 
21 rank-one updates, we are able to compute the inverse of the matrix A ( . ~ - I Z +  
Q) lAY in O(nZl) arithmetic operations. Note that all the other operations involved 
in the computation of A w = - A w ( w , ~ , l ~ )  are of the order of O(n  z) arithmetic 

operations. 
Having calculated the Newton direction A w ( w ,  ~, ~ )  at the current iterate w, we 

find the next iterate k -= (~, ~, ~), by setting ~ : x - Ax,  ~ = y - Ay  and ~ = z - dz ,  or 
in more compact notation, ~ = w -  Aw. 

We are now ready to describe the algorithm. The algorithm will generate a sequence 
of  points w k c W, k = 1, 2, 3 , . . . ,  where the initial point w ° is provided as input to 
the algorithm. We assume that the initial point w °--- (x °, yO, z o) c W satisfies the 

following criterion of closeness with respect to the path F: 

Ilf(w°) - #oe II ~< 0/Xo (3.2) 

where [[" II denotes the Euclidean norm,/Xo is a positive constant and 0 = 0.1. Given 
a QP problem in standard form, in section 6 we show how to construct an augmented 
QP problem which immediately yields a solution for the original problem, if there 
exists one. We also show that this augmented problem satisfies Assumption 2.1 of  
Section 2 and that an initial point w°c W satisfying the criterion of closeness is 

readily available. 
We now state the algorithm. 

Algorithm 3.1. Step 0: Let w°c W and/Zo> 0 satisfy (3.2). Let e be a given tolerance 
for the duality gap. Let 6---0.1 and y-=0.1. Set k :=0.  

Step 1: If  g(w k) ~-xkTzk~ e, stop. 

Step 2: Choose ~ = (~, ~) E ~+ x R+ satisfying 

IXki ~ Xil ~ ~/, 

Xi 

- - 4 %  

Step 3: 

Step 4: 

i = l , . . . , n ,  

i = l , . . . , n .  

Set /~k+l :---- ~k(1 --/~/x/n). Calculate A w  k =- d w ( w  k, ~, I~k~l). 

Set wk+I: = wk--Aw k. Set k:= k + l  and go to Step 1. 

4. Convergence results 

In this section, we present convergence results for the algorithm described in Section 
3. We start by stating the main result. We first need to introduce some notation. 
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Given two vectors x c IR+ and ~ ~ ~", we denote the Euclidean norm of the vector 
x - l ( ~ - x )  by I I ~ - x l k ,  i.e., 

= [ , 

The main result is 

Theorem 4.1. Let  0 = 6 = y = 0.1. Let w = ( x, y, z)  c W and tx > 0 satisfy 

] I f (w)- /zel l  <~ 0/z. (4.1) 

Let  ~ = ( ~, Z) c ~ ~_ x ~ + satisfy 

Ix, - ~,1 
~<3/, i = l  . . . .  ,n,  (4.2) 

I z , - ~ l  <~y, i = l , . . . , n .  (4.3) 

Le t /2  > 0 be defined as 

/2 = / ~ ( 1  - 8/~). (4 .4 )  

Consider the point ~ ~ (~, ~, 2) e ~" x R "  x ~"  defined by ¢; =- w - Aw where Aw ==- 

aW(W, ~,/2). Then, we have 

(a) ~ e W and 

[[;-XIIx <~0.28, 

I[~-z[L~<~o.28, 

(b) I I f (~) - /2e l [  <~ 0/2, 
(c) g(~)-= 2 T ~  1.1n/2. 

(4.5) 

(4.6) 

Theorem 4.1 describes the local behavior of  Algorithm 3.1. I f  w is the current 

iterate then the next iterate ~, obtained by taking the Newton step Aw(w,  g,/2), is 
guaranteed to be feasible and to satisfy the criterion of closeness with respect to 
the reduced penalty parameter/2.  The proof  of  Theorem 4.1 requires some technical 
preliminary results. 

Let w = (x, y, z) ~ W, ~ = (#, ~) ~ ~+ x ~_ and /2 > 0. Let Aw = (Ax, Ay, Az) be the 
direction aw(w,  ~,/2). Consider the point defined by ~ = w - A w .  The next result 
provides expressions for the product of  complementary variables .~(~)-= ~ , ,  i =  
1 , . . . , n .  

Lemma 4.1. Let  w, ~, Aw and ~ be as above. Then, we have 

f , (  ¢:) =/2 + Ax,,az, + ( ;q - x,) Az, + ( ~, - z , )ax , ,  

( a x ) ~ ( a z )  >1 o. 

(4.7) 

(4.8) 
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Proof .  Expression (4.7) can be easily proved using the definition of f(v~) and 
expression (3.1.a). Multiplying expression (3.1.c) on the left by (Ax) v, we obtain 

(AAx)VAy  + (Ax)Vdz  - (Ax)TQAx = 0 (4.9) 

which immediately implies (4.8) upon noting expression (3.1.b) and using the fact 
that the matrix Q is positive semidefinite. This completes the proof  of the lemma. [] 

The next result was proved in Part 1 of this paper. Its proof  is straightforward. 

Lemma 4.2. Let r, s and t be real n-vectors satisfying r+ s = t and rTs>-O. Then, we 

have: 

max{llrll, Ilsll} <- [[tll, 

IItLI 2 
[[RSell < ~ - -  

2 

where R and S denote the diagonal matrices corresponding to the vectors r and s 
respectively. 

The next result is an immediate consequence of the previous lemma. It provides 
bounds necessary to show that the points generated by Algorithm 3.1 are feasible 
and remain close to the path F. Let w = (x, y, z) c W, g--- (~, ~) c ~ x ~+ and/2 > 0. 
Let Aw = ( dx, Ay, d z  ) be the direction Aw( w, ~, /2 ). Let Af= ( A X ) (  / IZ)e,  where / IX 
and / IZ  are the diagonal matrices corresponding to the vectors d x  and /iz respec- 
tively. An upper bound on the Euclidean norm of the vector ~if is given by the 
following result. 

Lemma 4.3. Let ~if be defined as above. Then, we have 

Ilf( w) - /2el} 2 
I]/ITH ~< 

2,Tmin 

where attain ~ min{~i~i ; i = 1 , . . . ,  n}. Furthermore, we have 

[[ 13/iz l] 2 <~ [If( w ) -  fie [[2 
fmin 

I l f ( w ) - / 2 e l i  2 II/5--1/iX}}2 ~ 
J~rn i n 

where 13 is the diagonal matrix defined by 13 = ( ~ - , ~ ) 1 / 2 .  

Proof .  It follows from (3.1.a) and (4.8) that 

13-'~ix + 13Az = ( ;~Z) -  I/2( X Z  - / 2e ) ,  

(13- 'ax) r(13/iz) > o. 
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The lemma now follows by applying Lemma 4.2 and noting that 

{{ (XZ)-1/2(XZe - i~e)[[2 ~ ]1 f ( w )  - /~e [[2 
fmin 

This completes the proof of the lemma. [] 
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The next lemma provides some additional relations that will be useful in the 
proof of the main theorem. 

Lemma4.4. Let 0 ~ 0 < 1 ,  0<~ 3/<1 and O<~3<~x/n be given. Let w = ( x , y , z )  c W 
a n d / z > 0  satisfying (4.1), ~=(Y,Y)E~+x~+  satisfying (4.2) and (4.3) be given. 
Define ~ as in (4.4). Let Aw=-- ( Ax, Ay, Az) be the direction Aw( w, ~, 12). Let p and q 
be defined by 

p = (1 - 0)(1 + y)-2, (4.10) 

q = ( l + O ) ( 1 - 3 , )  -2. (4.11) 

L e t / )  = (~-1j~)1/2. Then, we have the following relations: 

plx<~Y~<~qlx , i = I  . . . .  ,n, (4.12) 

( O + a ) 2 ~  
IIAf{[ <~ (4.13) 

2p ' 

[[~_I Axll2 ~ (0-}- 3)2],,~ (4.14) 
P 

[[/~AZII2 ~ (0 "q- ~ ) 2  (4.15) 
P 

Proof. From (4.2) and (4.3) it follows that 

O<l-y<~x~<~l+y,, i = l , . . . ,  n, 
Xi 

0 < l - y < ~ - ~ < ~ l + y ,  
Zi 

which implies, 

i = l , . . . , n ,  

( 1 - T ) 2 ~ ( 1 + T )  2, i = l , . . . , n ,  
XiZi 

or equivalently, for all i = 1 , . . . ,  n, 

(1 + 3, ) -  2 x~z, <~ ,Y~ <~ (1 - ~, ) -  2 x~z,. (4.16) 
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Using (4.1), we obtain 

(1 - 0)/~ ~< xizi -<- (1 + 0)/z, i = 1 , . . . ,  n. (4.17) 

Combining (4.16) and (4.17), it follows that for  all i = 1 , . . . ,  n 

(1+  y)-2(1 - 0)/~ ~< ~iS, ~< (1 - y) 2(1 + 0)/~ 

which is exactly (4.12). F rom (4.1), (4.4) and the fact that rle[] =~-n, we have 

liT(w) -t~e]] 2<~ (]Jf(w)- tzelJ  + Jltze-/.~e IJ) 2~< (0~ + I/£ --/~1 [Jell) 2 

= (0]£ + (~L) 2 = ( 0  "~ ~)2~.L2. (4.18) 

Using Lemrna 4.3, relations (4.12) and (4.18), we immediately obtain (4.13), (4.14) 
and (4.15). This completes the p roo f  of  the lemma. []  

We are now ready to prove Theorem 4.1. 

Proof  of Theorem 4.1. (a) From (3.1.b), (3.1.c) and the fact that w c W, it follows 
that ~ --- (~, f ,  ~) satisfies A4 - b, A ~  + ~ = c. It is enough to show that ~ and ~ are 
strictly positive vectors to conclude that ~ W. We note that (4.5) and (4.6) 
immediately imply that ~ > 0 and 2 >  0 since x > 0 and z > 0 by assumption.  We 
will now show that (4.5) and (4.6) hold. From the definition of  ~, we have 

i=l  \ Xi if i=1 \ Xi ] 

where /~, denotes the ith diagonal element o f  the matrix / )  = (~-1)~)1/2, that is, 
/ ~  = (Z/Y~) 1/2. Using (4.1), (4.2), (4.3) and the definition of/~i~, we obtain, for all 
i = l , . . . ,  n, 

zi -~i 1 1 
/ = 

The last inequali ty together  with (4.19) implies 

The last relat ion and inequali ty (4.14) o f  Lemma 4.8 then imply 

r l I l x - x l l x < ~ L ( l _ 3 " ) ( l _ O ) p J  ( o + a ) .  

Using the definition o f p  given by (4.10) and the fact that 0 = 6 = 3' =0.1,  we obtain 
(4.5). In a similar way, one can prove (4.6). This completes the p roof  of  (a). 

(b) It follows from expression (4.7) and the propert ies of  norms that 

I I f (~)- /~e]]  = ]l A f  + ( 2 -  X ) A z  + ( Z -  Z)Axl l  

II fll + I I (X-x)Azl l  + 11(2- Zmxll. (4.21) 
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Using the definition of the Euclidean norm, we obtain 

[[(2-x)a~11 ~ ~ (~,-x,)e(az,) ~ 
i--1 

= L [/5;;z( 2~, - xi)]e(15,az,) 2 (4.22) 
i = l  

where / ) ,  denotes the ith diagonal element of the matrix / ) =  (Z 12)1/2. Using 
(4.2) and (4.12), it follows that, for all i=  1 . . . .  , n, 

~ ~ [ X i  - -  X i ~  2 
[/)7/1(Y,-xi)] 2= (xiz,)~--~ ) <~ qtzy 2. (4.23) 

Relation (4.15) of Lemma 4.4 and relations (4.22) and (4.23) imply that 

I1( 2 _ X)AzI{  2 ~  qy2(O + ~$)2 2 (4.24) 
P 

In a similar way, one can prove that 

[[ (Z - Z)Ax  II 2 <~ qy2( 0 + a ) 2 / . g  2 (4.25) 
P 

From (4.21), (4.13), (4.24) and (4.25) it follows that 

IIf(w)-/2ell<~L 2p +2y(0  /,. 
\ P /  3 

From the expression of/2 in (4.4), we obtain 

/2 
( l - a )  

which implies 

[[f(~)- /2e[[<~(l_8)L ~- p ~-2y(0+ 

Using the definition of p and q given by (4.10) and (4.11) and the fact that 
0 = a = 7 = 0.1, it follows that IIf(v~) - /2e II ~ 0~ and this completes the proof of (b). 

(c) From statement (b), we have [[f(~) - /2e II ~< 0.1 ~2 which implies that ~/~/~< 1.1/2. 
Summing this inequality over all i = 1 , . . . ,  n, we obtain 

L 1~-* A g(~)  : xiz~ ~ l.ln/z. 
i=1 

This completes the proof of (c). 

We will now describe the consequences of Theorem 4.1. 

Corollary 4.1. The sequence of  points (w k) generated by Algorithm 3.1 satisfies 
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(a) w k c W, for all k =  1, 2 , . . . ,  and 

I[x  '-xkllx  0.28, IIz +'-zkflzk  0.28, 

(b) ]lf(w k) -~kelf ~< 0~k, for all k = 1, 2 , . . . ,  
(c) g(w k) =- xkVz k <~ 1.1n/Zk, for all k = 1, 2 , . . . ,  

where/Zk =/Zo(1 --3/~/n)k for k =  1, 2 , . . . .  

Proof. This result follows trivially by arguing inductively and using Theorem 4.1. [] 

We now derive an upper bound on the total number of iterations performed by 
Algorithm 3.1. The following result follows easily from Corollary 4.1 and is proved 
in Section 4 of Part I of this paper. 

Proposition 4.1. The total number of  iterations performed by Algorithm 3.1 is no 
greater than k*=-[ln(1.1ne-llzo),,/-ff/6] where e > 0 denotes the tolerance for the 

duality gap and tZo is the initial penalty parameter. 

We define the size L(A,  Q, b, c) of a quadratic programming problem in the 
standard form (P) as 

['. {largest absolute value ofthe determinant 1)]  
L(A, Q, b, c) = log + 

| Ik of any square submatrix of M 

+ [log(1 + max cj ) ] + [log(1 + max bi ) ] 

+ [log(m + n)] (4.26) 

where M is the matrix given by 

In a similar way, we define the size L(D, d) of a system of linear inequalities D~, ~ d, 
where D is an integer p x q matrix and d an integer p-vector, as follows. 

rl /largest abs°lute value ° f  the determinant )1  
L(D, d) = og 

| !~ of any square submatrlx of D + 1 

+ [log(1 + max[d,I) ] + [log(p + q)]. 

It is straightforward to verify that the constant L = L(A, Q, b, c) is less than two 
times the number of bits necessary to represent the data of the QP problem (P). 
The following result claims that we can find optimal solutions for problems (P) and 
(D) in O(n 3) arithmetic operations once the duality gap at a point w k generated by 
Algorithm 3.1 becomes sufficiently small. 
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Proposition 4.2. Let the convex QP problem in the standard form (P) be given. Assume 

we have a point # = (2, ~, ~) in the set W satisfying 

ffT~ <~ 2-2(L+3) (4.28) 

where L = L(A,  Q, b, e). Then, from ~, we can find a point w* = (x*, y*, z*) in no 
more than O(n 3) arithmetic operations, such that x* and w * = ( x * , y * ,  z*) solve 

problems (P) and (D) respectively. 

The p r o o f  of  this p ropos i t ion  follows immedia te ly  f rom the fol lowing result. (See 
Papadimi t r iou  and Steiglitz [8, pp. 173-174, L e m m a  8.7].) 

Lemma 4.5. Let D be an p x q integer matrix and let d be an integer p-vector. Let 
0 <  ~'<~2 -£  be given, where L= L(D, d). Assume that a solution ~ for the system of 
linear inequalities Dv < d + ~e is known where e denotes the vector of  all ones. Then, 
we can find a solution v* jor the system of linear inequalities Dv<~d in O(p2q)  
arithmetic operations. 

Using this result, we can prove Proposi t ion 4.2 as follows. 

Proof of Proposition 4.2. Let ff = 2 - ( L + 3 ) .  Let I = {i; xi < ~'} and  J = { j ,  ~ < ~} ,  By 

(4.28), it follows that  I u J = { 1 , 2  . . . .  ,n}.  Consider  the system defined by the 
fol lowing linear inequalit ies:  

A x < b + ~ e ,  - A x < - b + ~ e ,  - Q x + A V y < c + ~ e ,  

- ( - Q x + A V y ) j < - c j + ~ , j < J ,  - x < ~ e  and xi<~, i c l .  

We can write this system as D v  < d + fie where  D and d are the appropr ia te  p x q 
matr ix  and p-vector  suggested by the above definition, with p = 2(m + n ) +  III + IJI, 

q = m + n and v is the q-vector  (x, y). Obviously ,  ~ = (if, ~9) is a solut ion for  the 
system D u <  d+~e. Let /~= L(D, d). One can easily show that  £<~ L + 3 .  Hence  
~ ' ~ 2  -~ and therefore,  by L e m m a  4.5, we can find a solut ion v * =  (x*, y*) of  the 
system Dv<~d in at mos t  O(p2q)=O(n  3) ar i thmetic  operat ions .  Letting z * =  
e + Qx* - AVy *, it follows f rom the definit ion of  Du <~ d that  w* = (x*, y*, z*) is in 

the set W and satisfies x* = 0, i c I and z* = 0, j c J. Since I u J = {1, 2 . . . .  , n}, we 
have (x*)Vz * = 0. The result  now follows once we note the converse  par t  of  Proposi-  

t ion 2.3. []  

Corollary 4.2. I f  the initial penalty parameter tXo satisfies/Xo = 2 O(L) then Algorithm 
3.1 solves problem (P) in at most O(x/-ffL) iterations. 

Proof.  Using the previous proposi t ion,  we can set e = 2 -(c+3) as the to lerance for  

the duality gap in Algor i thm 3.1. From Proposi t ion  4.1, we immedia te ly  conclude 
the validity of  this corollary.  
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In Section 5, we will see that the initial penalty parameter #0 can be chosen to 
satisfy ~ o = 2  L~L). One possible choice for the approximation £ ~  (~, 5) in step 2 of 
Algorithm 3.1 is to use exact data, that is, to set £, on the kth iteration, equal to s k. 
With this choice of g, we have the following result whose proof  is immediate. 

Corollary 4.3. Algorithm 3.1 solves problem (P) in no more than O(n3SL) arithmetic 
operations. 

In the next section, we present an alternative choice for the approximation that 
makes it possible to reduce the complexity of Algorithm 3.1 to O(n3L) arithmetic 
operations. 

5. A good choice for £" and 

In this section, we show that the complexity of Algorithm 3.1 can be reduced to 
O(n3L) arithmetic operations. We should point out that this idea for reduction of 
the complexity was first presented in Karmarkar [3] and subsequently in Gonzaga 
[1] and Vaidya [9]. The reduction basically consists of using a direction that 
approximates the "exact" direction calculated from using "exact"  data, that is, the 
current iterate. In our case, an approximate direction is implicit in the choice of 
the approximation £. In this section, we show that by choosing the approximation 

judiciously, a reduction in the average work per iteration is obtained. The choice 
of the approximation £ is made by an updating scheme as follows. (In the procedure 
below, k stands for the iteration count.) 

Updating scheme 5.1. 
For k:--0, set £ : = x  ° and Z:=z °. 
For k > 0 do 

For i =  1 , . . . ,  n do 
If  one of  the following holds: 

(a) Ixki-xil> y, 

(b) ]z~- z~[> y, 
2i 

then set xi := x/k and zi := z~. 
end of scheme. 

In order to calculate the directions Ax, Ay and Az determined by system (3.1), 
we need to calculate the inverse of the matrix 

B =- A ( Z + f C Q ) - I X A  T= A ( X - ~ 2  + Q ) - ' A  T (5.1) 
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where 7--- 07, ~) represents the approximation for the current iteration. Let gk and 
Bk denote the approximation g and the matrix given by (5.1) respectively at the kth 
iteration of Algorithm 3.1. Also let Dk denote the matrix ()~k)-1 ~k. We show next 
that if the matrix Dk differs from the matrix Dk_l by exactly 1 diagonal elements 
then the computation of B ; '  can be carried out in O(n2l) arithmetic operations by 
means of  21 rank-one updates. 

Let E = Q + Dk_, and H = Dk - Dk-l .  Then we obtain 

B k , ~- A E - ' A  T (5.2) 

and 

Bk = A ( E  + H ) - I A  T. (5.3) 

Obviously, H is a diagonal matrix. Denote the i th diagonal element of  the matrix 

H by hi. By assumption, exactly 1 diagonal elements hi are non-zero. For simplicity 
of  notation, we assume that these elements are the first l diagonal entries of  the 
matrix H. Then the matrix H can be written as 

l 

14 = Y, h iu ' (u ' )  ~ 
i=, 

where u i denotes the n-vector where all components  are zero except the ith com- 
ponent which equals one. Let Ej be defined as 

E 0 ~ E ,  

E j  ~- E i - i  q- hJUJ( u J )  T, j = l , . . . , 1 .  
(5.4) 

Note that El = E + H. Note also that, by definition, Ej - Q has the first j diagonal 
elements equal to the corresponding diagonal elements of  the matrix E + H - Q = Dk 
and the others equal to the corresponding diagonal elements of the matrix E - Q = 
Dk_,. Therefore the matrices Eo, E~ . . . . .  E~ are positive definite, and hence invert- 
ible. Applying the well-known Sherman-Morr ison formula of  linear algebra to the 
matrix Ej as given in expression (5.4), we obtain, for j = 1 , . . . ,  l, 

hj "~ i " " T  , 
E;'= E;~,- l+h ' u ~ E  -~, ;JEJ~"~'(~') E/_',. j \  ] j--I  t~ ] 

Thus, using the above expression, we can obtain E [  1 as follows. 

I 

ET'  E o '  Y i, i,T = -- giu ~v ) (5.5) 
i = ,  

where the scalars gi and the n-vectors u i, i = 1, . . . ,  l, are generated recursively by 
the following iterative procedure. 
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Procedure 5.1. Given Eo 1 then: 
For j =  1 , . . . , 1  do 

lj j = E j - l l  u j ,  
gj = hJ (1  + hj(uJ)YvJ), 

E l '  = Ei2~ - g j # (  v J) ~. 

end of procedure. 

Since El = E + H and using expressions (5.2), (5.3) and (5.5), we obtain 

l 

Bk = Bk-~ - )~ g j (Av~)(Av~)  v. (5.6) 
j -  1 

We can also use the same process described above to find the inverse of the matrix 
Bk using expression (5.6) and the matrix B[_~ already calculated in the previous 
iteration of the algorithm. We note that the procedure above involves O(n21) 
arithmetic operations. We summarize the discussion above in the following result. 

Proposition 5.1. Let Bk denote the matrix given in (5.1) at the kth iteration o f  Algorithm 

3.1 and let Dk--( ) (k)  l~g. Assume  that the matrices' (Dk_I+Q)  -1 and B~I~ are 

given. I f  Dk i differs f rom Dk by exactly l diagonal elements, then the matrices 

(Dk + Q) 1 and B~ 1 can be f ound  in at most O(n21) arithmetic operations. 

Next we provide an upper bound on the number of diagonal element changes 
that occur on the matrix )(-~,~ during K steps of Algorithm 3.1. Note that the ith 
diagonal element of the matrix (j~-i ~) changes only when either inequality (a) or 
(b) of the Updating scheme 5.1 is satisfied. 

The following result is due to Gonzaga [ 1]. Since we state it here in a more general 
form than is presented in [ 1 ] and for the sake of completeness, a proof  of this result 
is given in Appendix A. 

Proposition 5.2. Let ( uk) ~ o be a sequence o f  n-vectors with all components positive 

and satisfying 

II  +l-,kll   k = 0 , 1 , . . . , K - 1  (5.7) 

( v ) I,=o recursively where p is a positive constant less than one. Define the sequence -k K 

as follows. Set ~o := vo and for  k >~ 1 and i = 1 . . . . .  n let 

• i > T ,  

;k-1 otherwise, 

where y is a positive constant less than one. Let V~ be the set o f  indices k defined as 

. k ~k-1 } 
i v~ -v~  I l<~k<~ K 
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and let I V~[ denote its cardinality, that is, the number o f  times the ith component o f  
~ ~k~ ~: changes. Then, we have the sequence ~ Jk=o 

p K , /~  

~=, ( l - p )  In (1-  T)  

As a consequence of this result, we have the following corollary. 

(x  k~K and k K Corollary 5.1. Let ~ Jk=o (z )k~o be the sequences generated by Algorithm 3.1 
and let ~k = ( 2k, ~k) denote the value o f  the approximation ~= ( ~, 5) at the end o f  the 

kth iteration o f  the Updating scheme 5.1. Consider the following two sets: 

{ x k - 2 k - 1  } I i i I 
SY= k; ~k~ >"/, l~<k~<K , 

, i i L l<~k<~ K r ,  : k;  > 

Then, we have the following inequalities. 

[sfl ~ 3.7,/-gK, ~ I r f [  ~ 3.7,/-~K. 
i ~ l  i-=1 

Proof. This result follows immediately by using relations (4.5), (4.6) and Proposition 
5.2 with p=0.28  and y=0 .1 .  E] 

Thus, the total number of  rank-one updates that occur during K steps of Algorithm 
3.1 is on the order of O(~/~K). As a consequence of this result, we have 

Corollary 5.2. Algorithm 3.1 coupled with the Updating scheme 5.1 solves problem 
(P) in no more than O(n3L) arithmetic operations. 

Proof. From Corollary 4.2, we know that Algorithm 3.1 finds an optimal solution 
to Problem (P) in O(,f~L) iterations. Corollary 5.1 implies that the total number 
of rank-one updates is then of the order of  O(nL) .  Since each rank-one update 
involves O(n 2) arithmetic operations, the total number of arithmetic operations is 
then of the order of O(n3L). This completes the proof  of the corollary. [] 

6. Initialization of the algorithm 

In this section, we show how to initialize Algorithm 3.1, in order to solve any convex 
quadratic programming problem. With this aim, we introduce an augmented problem 
that has an initial start for the algorithm, whose size is of the same order as the 
original problem, and whose solution immediately yields a solution of the original 
problem. 
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Consider the convex quadratic programming problem, which we call the orignal 
problem, stated as follows. 

(f') min cT-~ "~ IxT 0X 

s . t .  = 

Y~>0, 

where ,4 is an rfi x r~ matrix which has full row rank, 0 is an ~ x ~ symmetric positive 
semi-definite matrix and/~, 6 are vectors of length rfi and ~ respectively. We assume 
that the entries of the vectors /~, ~ and the matrices A and (~ are integral. 

Observe that we might not be able to apply Algorithm 3.1 to solve problem (P) 
directly for the following reasons. First, problem (P) might not satisfy conditions 
(a) and (b) of  Assumption 2.1. Even if those conditions are satisfied, an initial point 
satisfying the criterion of  closeness (3.2) might not be known a priori. In order to 
circumvent these apparent difficulties, we introduce an augmented problem which 
will play an important role in the solution of problem (P). 

Before introducing the augmented problem, we need to define some quantities. 
Let/~ = L(,4, (~,/~, ~) denote the size of (~'). Let n = t~ +2 and m = ~ + 1. Let c~ = 2 4/` 

and A = 2 2/`. Let Kb and K,. be constants defined as follows: 

K b = a A ( ~ + I ) - A ~ T e - A 2 e T O e  , K,,=oc~. (6.1) 

The augmented problem can be stated as follows. 

(P) min cTx+½yTOfc-k-Kc-~ n 

s.t. A)? + (/~- A.Zie))?, =/~, 

(c~e -A(~e - ~)T)? + C~2n-, = Kb, 

~ 0 ,  ~._~>~0, ~.>~0, 

where 2?= ( x l , . . . ,  x,-2) T is an ( n - 2 ) - v e c t o r  and "~n--1 and 2~, are scalars. The dual 
problem corresponding to problem (P) is the problem stated as follows. 

(D) max -½~v0~+/~T)~+ Kb.Vm 

s.t. --O~ +-4Ty+ ( a e -  A O e -  ~)fim + Y = Z 

aJ~m + in- ,  = 0, 

( F~ - ,~A.e ) TY' + L = Kc, 

330, L_I~O 3n~0 , 

where )7 is an (m - D-vector, ~ and 3 are (n - 2)-vectors, )~m, 3._~ and 3. are scalars. 
These problems can be recast in the notation of problems (P) and (D) of Section 
2 as follows. Let x = (£T, ~. ~, y.)T e ~ .  y = (fiT,)7,.)TO •. ,  Z = (3 T, 3._~, 3.)Tc ~", 
and ~,= (~T, ~.-1, ~.)Te~n. Define b c ~  r", c c ~ "  and A c ~  m×" as follows: 

b = (  gb ) c -.~ gcO" A~-(ote_~Oe_{)To l . (6.2) 
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Let Q c ~'×~ denote the block diagonal matrix as follows: 

Q = diag(t~, 0, 0). (6.3) 

Let L = L(A,  Q, b, c) denote the size of (P). With this notation, we can then rewrite 
problems (P) and (D) as in Section 2. We refer to thse two formats interchangeably. 

In the following, we intend to show some results related to the augmented problem 
(P). First, we show that Algorithm 3.1 can be directly applied to problem (P). We 
will see that an initial point w ° belonging to the central path of  this augmented 
problem is readily available. Second, we show that the sizes of problems (P) and 
(P) are of  the same order. Finally, we describe how a solution of  problem (P) can 
be obtained from a solution of problem (P). 

We start by verifying that problem (P) satisfies Assumption 2.1 of Section 2. 
Assumption (c) is obviously satisfied since A was assumed to have full row rank. 
We verify assumptions (a) and (b) jointly by exhibiting a point w ° = (x °, yO, zO) 
which is in the set W defined in Section 2 and satifying the criterion of closeness 
(3.2). Le tx  °--- ( h , . . . ,  h, 1 ) v c ~ ' , y ° =  ( 0 , . . . , 0 , - 1 ) T c ~ m  and z °=- ( a , . . . ,  a, ah)T 

R". Using (6.1), one can easily verify that Ax  °= b and - Q x ° + A T y ° +  z °=  c. Hence 
w°e W. Moreover, f ( w ° ) = a h e ,  which implies that not only does w ° satisfy the 
criterion of closeness (3.2)with/Zo = ah, but also that it lies on the central path F. 

We now show that the sizes of problems (P) and (~)) are of the same order. The 
following observations are easily shown. 

(1) From the definition of Q, A, b and c given by expressions (6.2) and (6.3), it 
follows tha t /~<  L. Since/~o = ah = 26~, this implies that/~o = 2°(L)- This fact shows 
that the assumption of Corollary 4.2 is satisfied. 

(2) The largest absolute value of the determinant of any square submatrix of M 
is at most 2 z3L. 

(3) maxilb~[ < 2  7/2 and maxj]cjl < 2  6t]. 

(4) Statements (2) and (3) imply that L<~ 36/~. Statement (1) then implies that L 
and £ are of the same order. 

We now concentrate our effort towards showing the relationship between the 
optimal solutions of the augmented problem (P) with the optimal solutions of the 
original problem (P). We start by pointing out some facts which are important for 
our purposes. 

The Karush-Kuhn-Tucker  necessary and sufficient condition for Y~ ~ to be a 
solution of problem (P) is that there exist vectors 3~ c ~ "~ and ~ c ~ such that the 
following is satisfied: 

(0~ - [AQ- " - A T l ( x ~  = ( _ b ) ,  (6.4.a) 
0 j \ ) 7 /  

Y>~0, Z>~0, (6.4.b) 

~T~ = 0. (6.4.c) 

A well-known result from linear complementary theory is that if the system (6.4) 
has some solution then it has a solution which is a vertex of the polyhedron given 
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by (6.4.a) and (6.4.b) [6]. The following lemma is a well-known result whose proof 
follows from an immediate application of Cramer"s rule. 

Lemma 6.1. Let ff~ = ( ~, fi, Z) be a vertex o f  the polyhedron given by (6.4.a) and (6.4.b). 
Then the coordinates o f  ff~ are rational numbers with numerator and denominator less 

than or equal to 2 L. 

The next lemma provides an estimate useful for our purposes. 

Lemma 6.2. Let ~ = ( f:, ~, i )  be a vertex o f  the polyhedron given by (6.4.a) and (6.4.b). 
Then the right hand side coefficient Kb and the cost coefficient K,  o f  problem (P) satisfy 

Kb > (/~- h/~e)Ty, 

K~ > (eee - A Q e  - ~)T2. 

The proof  of Lemma 6.2 follows from Lemma 6.1 and the definition of the 
constants Kb and Kc given by relation (6.1). Note that, by construction, problems 
(P) and (D) have feasible solutions and therefore, they have optimal solutions. We 
are now ready to state the relationship between the optimal solutions for the original 
problem with those for the augmented problem. 

Lemma 6.3. Let x = ( x l , . . . ,  Xn) T and (x, y,  Z) = ( ( X l , . . .  , Xn) T, ( Y l , ' ' ' ,  Ym) T, 
(z~, . . .  ,zn) T) be optimal solutions for problems (P) and (D) respectively. Then, (P) 

has an optimal solution if, and only if, x,, = 0 and z, 1 = 0 (and consequently y~ = 0). 
In this case, i f  we let ~=- (Xl, . . . ,  x,-2) T, )7~ ( y ~ , . . . ,  y~_l) T and ~=- (zl . . . .  , z,  2) v 
then ~ and (~, f ,  Z) are optimal solutions for  (P) and ( 0 )  respectively. 

Proof. We first prove the only if part. Assume that problem ([') has an optimal 
solution. Then, by the observation following (6.4), there exists a vertex of the 
polyhedron given by (6.4.a) and (6.4.b), say (£ , ,  f , ,  £,), such that (£,)w£, = 0. 
Consider the vectors x ,  c W', y ,  c ~"~ and z ,  c A n defined as follows: 

---~ )~T x ,  ( , ,  Kb-- (de--  A Q e -  ~)T£, 0)T, 

= r ~  T OXl T 

~T z,  = (z, ,  0, Kc - (b - AAe)Tf f :~ )  T. 

Note that by Lemma 6.2, (x,)n 1 > 0 and (z,)n > 0. Using this fact, one can easily 
verify that x ,  and ( x , , y , ,  z , )  are feasible solutions for problems (P) and (D) 
respectively. Moreover, since (£,)T£, = 0, we have X,z,T = 0. Hence, by complemen- 
tary slackness (cf. Proposition 2.3), it follows that x ,  and (x , ,  y , ,  z , )  are optimal 
solutions for (P) and (D) respectively. 

Consider now any optimal solutions x and (x, y, z) of (P) and (D). Then, by 
complementary slackness and the fact that (x , ) ,  1 > 0, it follows that zn-1 = 0, and 
therefore Ym = 0. Similarly, since (z,)n > 0, we have x, = 0. This proves the only if 
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part.  Moreover ,  the above implies that  )~ and  (2, 37, £) are feasible solutions for ([') 

and  (I]) respectively and that  yv£  = 0 since xTz = 0. Thus,  2 and 0~, 37, £) are opt imal  
solutions for  (P) and (D) respectively. 

To see the if part ,  assume that  x,  = 0 and z,_l = 0 (and hence,  y,, = 0). This implies 
that  Y and (Y, 3~, £) are feasible solutions for  (P) and (I))  respectively.  Hence ,  using 
Proposi t ions  2.1 and 2.2, we conclude that  (P) has an opt imal  solution. 

To summar ize ,  we now state the main  result o f  this section. 

Proposition 6.1. Problem (P) can be solved in at most  0(/~3/~) arithmetic operations. 

Proof.  Apply ing  Algor i thm 3.1 to p rob lem (P), we obtain  vectors  x = (xl ,  • • •, x . ) ,  

Y = (Y~ . . . .  , Ym) and z = ( z ~ , . . . ,  z.) such that  x and (x, y, z) are opt imal  solutions 
for p rob lems  (P) and (D) respectively. Let Y = - ( x ~ , . . . ,  x , _ j  v, ~ ( y ~ , . . . ,  Ym 1) T 

and £ ~ (z~ . . . .  , z,_2) v. Cons ider  the fol lowing possible  cases. 
(i) I f  x,z,_~ = 0 then it follows f rom L e m m a  6.3 that  

(a) I f  x,  = 0 and Z~_l = 0 then 2 and (2, 37, £) are opt imal  solutions for  p rob lems  
(1}) and (I])  respectively. 

(b) I f  x ,  # 0 then (P) is infeasible. 
(c) I f  z, ~ ~ 0 then (P) is unbounded .  

(ii) I f  x,z,_l  # 0 then L e m m a  6.3 implies  that  (P) is either u n b o u n d e d  or infeasible.  
In this case, we solve the LP p rob lem obta ined  by replacing the objective funct ion 
of  p rob lem (P) by the l inear funct ion K~.~,. I f  the result ing opt imal  solut ion ~ of  
this p rob l em satisfies ft, = 0 then (P) is unbounded .  Otherwise,  (P) is infeasible.  

By Corol la ry  5.2, the computa t ion  above  can be carr ied out  in at most  O(n3L) 
ari thmetic  operat ions.  Since r~ = n - 2 and L and /~ are of  the same order,  it follows 
that  the total  numbe r  of  ar i thmetic  opera t ions  spent  to solve p rob lem (P) is on the 
order  of  0(~3/~,). [3 

7. Remarks 

The purpose  of  this pape r  is to present  a theoret ical  result. Thus  in order  to simplify 
the presentat ion,  we cons t ruc ted /2  = / x ( l  - 6/.,/~). Obviously ,  one can use /2  which 

is less than  or equal to the above value,  but  still ensures s ta tement  (b) of  Theorem 
4.1 and relat ions (4.5) and (4.6). In this way, one can accelerate the convergence  
of  the algori thm. 

We should ment ion  that,  th roughout  the paper ,  we assumed  that  m = O(n) .  One  
can easily show that  the complexi ty  achieved in Part  II  o f  this paper ,  for l inear 
p r o g r a m m i n g  problems,  expressed in terms of  m and n is O((nm2+ n~Sm)L). The 

first te rm is due to the ar i thmetic  opera t ions  spent  in the rank-one  upda tes  and the 
other  t e rm is due to the remaining  operat ions.  The same considerat ions  do not apply  
for  the general  convex quadrat ic  p r o g r a m m i n g  prob lem,  except  for  the case when 
the matr ix  Q is diagonal .  
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It is well known that  a l inear  complementa r i ty  p rob lem with posit ive semi-definite 
matr ix  can be reduced to an equivalent  convex quadrat ic  p r o g r a m m i n g  p rob lem 
and vice-versa (cf. [7]). Thus,  the a lgori thm presented in this pape r  can be used to 
solve l inear  complementa r i ty  p rob lems  with posi t ive semi-definite matrices.  At the 

t ime of  writ ing of  this paper ,  we were in formed of  a recent p a p e r  by  Ko j ima  et al. 
[4] which present  an a lgor i thm for  solving l inear complementa r i ty  p rob lems  with 
posit ive semi-definite matrices.  They obta ined  the same complexi ty  as the one 
achieved in this paper .  

Appendix A 

In this appendix ,  we give the p r o o f  of  Proposi t ion 5.2. 

Proof of Proposition 5.2. We first prove  that  for  all i = 1, . . . ,  n, we have 

I v, J <- - [ (1  - p ) i n ( 1  - (A.1) 
k=0  P i  

where d u  k-= u~ +1 - p~. Inequal i ty  (5.7) implies that  for  all k = 0 , . . . ,  K - 1, 

]a fl I . ? ' -  
k -- k ~ P  

/Yi P i  

and therefore,  for  all k = 0 , . . . ,  K - 1, we have 

k + l  
P/  

k ~ l - - p .  

The last inequal i ty  then implies that, for  all k = 0 , . . . ,  K - l, 

]~---~ <~ (1 -  p)-' IA~ )1 . (A.2) 
13 i /3 i 

Assume now that  /~ and /~ are two consecutive indices in the set V~,  with /~</~. 
~k K Then,  by the way the set V/K and the sequence  ( u ) k : o  were defined, we have 

Iln ~ , f - i n  uf[ > min{ln(1 + Y), - l n (1  - Y)} -- - l n (1  - Y). (A.3) 

On the other  hand,  we have 

Iln v ~ - l n  vfl = 

~ max~ -~  , (A.4) 

k ~ k  Pi 



R.D.C. Monteiro, L Adler / Path following algorithms H 65 

where the last inequality follows from (A.2). Combining (A.3) and (A.4), we obtain 

- l n ( 1 -  Y) <~ ( l - P )  - '  E -Z- (A.5) 
k=k l)i 

Summing the last inequality over all pairs of consecutive indices in the set V~ and 
rearranging, we obtain inequality (A.1). Now, summing inequality (A.1) over all 
coordinate indices i = 1 , . . . ,  n, we obtain 

t~, K 1 ]A/yk} 
I Vff[ ~<- [ (1 -  P) ln (1-  Y)] - '  E u~ 

i=l "= k=o 

K-,  ]A,,~i 
=-[( l -P)  ln(1- Y)]-~ Ek:o i=, ~ b'/k 

K ' 
~< -[(1 - p )  ln(1 - 3')]-' 2 %/nil / J k + l -  Pkllvk 

k=0 

~< -p[(1 - p )  ln(1 - ~ ) ] - I N / n K  

where the last inequality follows from (5.7). This completes the proof of the 
proposition. [] 
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