
Algorithmica (1992) 8:161-176 Algorithmica 
�9 1992 Springer-Verlag New York Inc. 

A Geometric View of Parametric Linear Programming 1 

Ilan Adler 2 and Renato D. C. Monteiro  3 

Abstract. We present a new definition of optimality intervals for the parametric right-hand side linear 
programming (parametric RHS LP) Problem r = m i n { c r x l A x  = b + 2b, x > 0}. We then show 
that an optimality interval consists eifher of a breakpoint or the open interval between two consecutive 
breakpoints of the continuous piecewise linear convex function ~o(2). As a consequence, the optimality 
intervals form a partition of the closed interval {2; 1~0(2)1 < oo}. Based on these optimality intervals, 
we also introduce an algorithm for solving the parametric RHS LP problem which requires an LP 
solver as a subroutine. If a polynomial-time LP solver is used to implement this subroutine, we obtain 
a substantial improvement on the complexity of those parametric RHS LP instances which exhibit 
degeneracy. When the number of breakpoints of q~(2) is polynomial in terms of the size of the parametric 
problem, we show that the latter can be solved in polynomial time. 

Key Words. Parametric linear programming, Sensitivity analysis, Postoptimality analysis, Linear 
programming. 

1. Introduction. The subject of this paper is to study the parametric right-hand 
side linear programming (parametric RHS LP) problem as follows: 

(Pz) m i n { c r x [ A x  = b + 26, x > 0}, 

where A is an m x n matrix and b, b, and c are vectors of dimensions m, m, and 
n, respectively. The parametric RHS LP problem (Pz), 2 ~ R, consists of solving 
each linear programming (LP) problem (Pz) for all values of 2 ~ R (or for 2 in a 
certain required interval). If ~o(2) denotes the optimal value of (Pz), it is well known 
that the function 2 ~ R ~ ~0(2) is a convex piecewise linear continuous function. In 
view of this property, only a finite amount of information is necessary to solve 
the parametric RHS LP problem. Basically, it consists of finding the "breakpoints" 
of ~o(2) and an optimal solution of (Pa) for all breakpoints 4. 

We present a way of approaching this problem which differs from the usual 
method based on the simplex method. Our main motivation to look back into 
this problem was the introduction of new methods for solving LP problems like 
the ellipsoid method introduced by Khachiyan [7] and the new interior point 
algorithm presented by Karmarkar [6]. 

1 This research was partially funded by the United States Navy- Office of Naval Research under 
Contract N00014-87-K-0202. Its financial support is gratefully acknowledged. 
2 Department of Industrial Engineering and Operations Research, University of California, Berkeley, 
CA 94720, USA. 
3 Systems and Industrial Engineering Department, University of Arizona, Tucson, AZ 85721, USA. 

Received April 26, 1989; revised May 20, 1990. Communicated by Nimrod Megiddo. 



162 I. Adler and R. D. C. Monteiro 

The existing method to solve this problem is the parametric RHS LP simplex 
method which was first discussed by Gass and Saaty [5] a few years after the 
simplex method was developed by Dantzig. Many textbooks describe this variant 
of the simplex method. See, for instance, Dantzig [1] and Murty [9]. The theory 
of sensitivity and parametric analysis both in discrete and continuous linear (and 
nonlinear) optimization has been the subject of intensive research. For example, 
the book by Gal E4] contains about 700 references related to sensitivity and 
parametric analysis. 

Both the existing theory of sensitivity and parametric analysis depends crucially 
on the concept of the optimality (or characteristic) interval associated with an 
optimal basis, that is, the set of values of 2 for which this basis is optimal for the 
LP problem (Pz). 

In this- paper we introduce a different definition of optimality intervals and 
derive an algorithm for solving the parametric RHS LP problem which can be 
implemented with the aid of any LP solver. As a first step we have to get rid of 
the concept of basis and introduce another invariant associated with the problem 
in order to define our optimality intervals. This is done by considering those 
partitions (B, N), which we call optimal partitions, such that B w N = { 1 . . . . .  n}, 
B c~ N = ~2~ and (x i > O, j ~ N )  and (A~y < cj, j ~ B )  are, respectively, the set of 
always-active constraints with respect to the primal optimal face and the dual 
optimal face of some problem (P~). We then show that an optimality interval is 
either an open interval between two consecutive breakpoints of ~o(2) or consists 
of a breakpoint itself. This shows that the real line is covered in a unique way 
using these optimality intervals. This is in contrast with the basis optimality 
intervals where even the closed interval determined by two consecutive breakpoints 
of q~(2) can be covered in many ways with possibly an exponential number of these 
intervals. 

The second step is to provide an algorithm for the parametric RHS LP problem, 
based on any LP solver, that computes a sequence of optimal partitions and their 
associated optimality intervals so that at the end we have covered the required 
interval by these optimality intervals. The approach is the same as in the existing 
pivot method which successively finds adjacent optimality intervals either going 
to the left or to the right of the real line. However, our approach solves an LP 
problem to find the adjacent partition and the corresponding optimality interval. 

It is well known that the parametric RHS LP problem cannot be solved in 
polynomial time due the existence of instances of the problem whose correspond- 
ing function ~0(2) exhibits an exponential number of breakpoints. One of the main 
consequences of our algorithm is an affirmative answer to the following related 
computational complexity issue: Can the parametric RHS LP problem be solved 
in time polynomially bounded by the size of the input and the number of 
breakpoints of ~0(2)? For nondegenerate problems, the answer to this issue is rather 
trivial and is provided by the parametric RHS simplex method discussed above. 
For degenerate problems, we show in Section 4 that the parametric RHS LP 
problem can be solved in O(kZ) where k is the number of breakpoints and Z is 
the complexity of solving a single LP problem of the same dimension. 

Our paper is organized as follows. In Section 2 we introduce some notation and 
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review basic results related to our development in this paper. In Section 3 we 
define our optimality intervals and provide a complete characterization of these 
intervals. In Section 4 we describe the algorithm for the parametric RHS problem 
based on any LP solver. In Section 5 we conclude the paper with some remarks. 

2. Problem Description and Some Theoretical Background. In this section we 
introduce the ctass of problems with which this paper is concerned. We also review 
some results pertinent to the present work. 

2.1. Preliminary Notations. R", R~_, and R~ + denotes the sets of n-vectors with 
reals components, nonnegative reals components, and (strictlY) positive reals 
components, respectively. Let A be an m x n matrix. Given a subset B of the index 
set {1 . . . . .  n}, we denote by AB the submatrix of A associated with the index set 
B. Also, the subspace generated by the columns of A is denoted by range(A). The 
ith row and jth column of A is denoted by A i. and Aq, respectively. A closed 
interval in R with extreme points c~ and fi is denoted by [e, fl] even when either 

= - oe or fl = oe. The closure of a set X _ R" is denoted by cl X. R denotes 
the set of extended reals, that is, R - R u { - oe, oo}. 

2.2. True Inequalities. Consider apolyhedron  Q _~ R",thatis ,  Q =_ {x e R"l A x  < 
b; Cx  = d}. The system of linear constraints A x  < b, Cx  = d is then said to be 
a representation of Q. A subset F of Q is a face of Q if either F = ~ or F is the 
set of optimal solutions for m i n { c r x l x ~ Q }  for some c~R".  We say that an 
inequality ax <_ fi of the system A x  <_ b is a true inequality for  the face F if ax < fl 
for  some x ~ F. When the face F is the whole polyhedron {x [Ax  <_ b, Cx  = d}, the 
set of true inequalities for the face F is referred to simply as the set of true 
inequalities for  the system A x  <_ b, Cx  = d. Let A'x  <_ b' be the true inequalities 
for the face F and A"x <_ b" be the other inequalities from A x  <_ b. It can be shown 
(see, for example, Section 8.3 of [10]) that 

(2.1) F = { x e R " l A ' x  < b'; A"x  = b"; Cx  = d}. 

The following observation easily follows from (2.1) and the definition of true 
inequalities. 

REMARK 2.1. Let F and F'  be two faces of the polyhedron Q. Then F _~ F' if and 
only if every true inequality for F is also a true inequality for F'. 

The following result will be useful later and can be easily proved. 

PROPOSITION 2.1. Let the face F and the matrices A', A ' ,  and C be as above and 
let f E R" be 9iven. Then the linear function x ~ f r x  is constant on F if  and only if  

f ~ range[(A") r, cT].  
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2.3. Optimal Partitions. Consider the LP problem in standard form 

(P) min{crx[Ax = b; x >_ O} 

and its dual 

(D) max{bTylATy <_ C}, 

where A is an m x n matrix, c is an n-vector, and b is an m-vector. Let X* and 
Y* denote the set of optimal solutions of problems (P) and (D), respectively. 
Assume that X* (and consequently Y*) is nonempty. Clearly, X* (resp. Y*) is a 
face of the polyhedron of feasible solutions for problem (P) (resp. (D)). Let the 
inequalities xj >_ 0 with j ~ B  ~_ {1 . . . . .  n} and the inequalities A r y  <_ cj with 
j ~ N c {1, . . . ,  n} be the set of true inequalities for the faces X* and Y*, respec- 
tively. This is equivalent to saying that 

(2.2) 

(2.3) 

B = {j lxj  > 0 for some x e X *  a n d j  = 1 . . . . .  n}, 

N = { j l c j -  A~y > 0 for some y e  Y* a n d j  = 1 . . . . .  n}. 

We then have the following well-known result. 

PROPOSITION 2.2. Assume that X* is nonempty and let B ~_ {1, . . . .  n} and 
N ___ {1 . . . . .  n} be as in (2.2) and (2.3). Then S c~ N = ~ and S u N = {1 . . . . .  n}. 

The pair of index sets (B, N) then determines a partition of the index set 
{1 . . . . .  n}. We refer to (B, N) as the optimal partition associated with problem (P). 
For a proof of Proposition 2.2, see, for example, Section 7.9 of [10]. In terms of 
the partition (B, N), the optimal faces X* and Y* can be written as 

X *  = { x l A B x n  = b; XB >-- O; X N = 0} ,  

y* = {y lAry  = eB; A r y  < cN}. 

2.4. Description of  the Parametric R H S  LP  Problem and Related Preliminary 
Results. In this subsection we introduce the problem which is the object of our 
analysis in this paper. 

Consider the parametrized family of LP problems in standard form 

(P~) min{crxlAx = b + 2b; x > O} 

and the corresponding parametrized family of dual problems 

(D~) max{(b + b)rylAry < c}, 

where b, b are m-vectors, c is an n-vector, A is an m x n matrix, and 2~R.  
Solving (Pa) for all 2 e R is known as the parametric RHS LP problem. We denote 
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the optimal value of (Pz) by q)(2) with the convention that  q~(2) = oo if (Px) is 
infeasible and ~o(2) = - oo if (Px) is feasible and unbounded.  With this convention,  
we then obtain an extended convex function ~o: R --. R, that is, a function taking 
values on R and whose epigraph epi cp = {(x, 0)e  R" x RI 0 _> q~(x)} is a convex set 
(see Proposi t ion 2.3 below). 

The next proposi t ion characterizes the " shape"  of the function ~o. 

PROPOSITION 2.3. There exists a closed interval [~, fl] (possibly empty) such that: 

(a) ~0(2) = oo for all 2 r [~, fl]. 
(b) Either (p(2) = - oo for all 2 s [~, fl] or (p([e, fl]) ___ R and in this case (pl[c~, fl] 

is a continuous convex piecewise linear function. 

For  a proof  of Proposi t ion 2.3, see, for example, Theorem 8.3, p. 288, of [9]. 
The cases in which either [e, fl] is empty or ~o(2) = - oo for all 2 e [e, fl] present 
no difficulty to our  analysis. Henceforth,  we make the following assumption. 

ASSUMPTION 2.1. [e, fl] is nonempty and (p(2)sR for all 2e  [~, fl]. 

In view of  Assumption 2.1, there exists a finite set of points e -- 20 < 21 < 
�9 "" < 2k = fl and real constants gi, hi, i e  {1 . . . . .  k}, such that  ~0(2) = gi2 + hi for 
all 2 s [2 i_ 1, 21]. The convexity of (p implies that  91 < 92 < "'" < gk. Obviously, ~0 
has left and right derivatives for all 2 s [e, fl]. Indeed, for all i e { 1 . . . . .  k}, r  = gl 
if 2 ~ (2 i_ 1, 2i), r 1) = 9i, and ~0'_(2i) = gi. By convention, if c~ (resp. fl) is finite, 
we let ~0'_(c~) = - c o  (resp. q~'+(/~) = oo). 

Throughou t  this paper  we let X(2) and Y(2), where 2 e [e, fl], denote the primal 
and dual optimal faces for problems (Pa) and (Dx), respectively. Also (B(2), N(2)) 
denotes the optimal part i t ion associated with problem (P~) where 2 e [e, fl]. 

The next proposi t ion expresses the left and right derivatives of the function q~ 
in terms of certain LP  problems. 

PROPOSITION 2.4. For any 2 e [~, fl], the left and right derivatives (p;(2) and ~o'+(2) 
are given by 

~o'_(2) = min{bryl y s Y(2)}, 

qY+(2) = max{/~ryt y e Y(2)}, 

For  a p roof  of Proposi t ion 2.4, see, for example, Theorem 8.2, p. 288, of [9]. 

3. Characterization of Optimality Sets of Optimal Partitions. The existing theory 
of  sensitivity and parametr ic  analysis depends crucially on the concept  of the 
optimality (or characteristic) interval associated with an optimal basis, that is, a 
basis which is primal and dual feasible for some problem (Px) where 2 e [e, fl]. In 
this case, the optimality set of an optimal basis is defined to be the set of all 
2 e [~, fl] for which such basis is optimal for the LP  problem (Pz). Hence, this 
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theory studies the invariance of the optimality of a basis with respect to change 
on the parameter 2. Instead, our analysis is based on the optimality set of an 
optimal partition. In this section we introduce and characterize the optimality set 
of an optimal partition. We also present some results relating "adjacent" optimal 
partitions. 

We start by defining the optimality set of an optimal partition. Let (B, N) = 
(B(2*), N(2*)) be an optimal partition associated with (P~,) where 2* E [~, fl]. The 
optimality set of (B, N) is the set defined as 

A(B, N) ~ {~.I(B0.), NO.)) = (B, N)}. 

We also consider the set associated with the optimal partition (B, N) as follows: 

A(B, N) - {21B(2) _~ B} 

= {;qN(2) ~ N}. 

Note that A(B, N ) ~  A(B, N). Note also that there are a finite number of 
optimality sets, one for each distinct optimal partition that appears in [e, fl]. 
Moreover, these optimality sets form a partition of [e, fl]. Using Remark 2.1, we 
can easily present equivalent definitions of the sets A(B, N) and ,~(B, N) in terms 
of the dual optimal faces Y(2) as follows: 

(3.1) 
A(B, N) = {21Y(2) = Y(2*)}, 

ft.(B, N) -= {~,1 Y(2) - Y(2*)}, 

where we recall that 2* is such that (B, N) = (B(2*), N(2*)). 
Our main result, the characterization of the optimality sets, is given in the 

following theorem. 

THEOREM 3.1. Let (B, N) = (B(2*), N(~.*))for 2* e [~, fl-]. Then: 

(a) I f  2 * =  2 i for some i~ {0, 1, . . . ,  k}, that is, 2* is a breakpoint of ~o(2), then 
A(B, N) = *(B, N) = 

(b) I f2* e (2 i_ 1, 2i) for some i e {1 . . . . .  k}, then A(B, N) = (21_ 1, 2~) and ~.(B, N) = 

[)~i- 1, 2i] .  

In order to prove Theorem 3.1, we proceed as follows. Consider an optimal 
partition (B, N) = (B(2), N(2)) for some 2 e [~,/7]. First, we show that the optimality 
sets A(B, N) and A(B, N) can be expressed as linear projections of certain poly- 
hedral sets (Lemma 3.1). This fact immediately implies that A(B, N) and ~,(B, N) 
are intervals which, in Lemma 3.2, are characterized by a certain algebraic 
condition on A B and /~. In view of this result, from now on we refer to the 
optimality sets A(B, N) as optimality intervals. Finally, we show in Lemma 3.3 
that this algebraic condition is related to the condition that 2 be a breakpoint, 
Theorem 3.1 then follows from these three lemmas. 
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We now 
{1 . . . . .  n} - B ,  let 

x~(4) 

2~(4) 

F{B) 

F{B) 

Y~ 

introduce new sets as follows. For B_~ {1,. . . ,n} and N =  

= { x ~ R " l A x  = b + 4b; xB > 0; xN = 0}, 

= { x ~ R " l A x  = b + 4/~; XB > 0; X N = 0}, 

= { 4 1 x . ( 4 )  # ~}, 

= {412.(4) # ;~}, 

= { y e R m [ A r y  = c~; A ~ y  < CN}. 

An equivalent definition of the sets F(B) and r'(B) which we use later is as 
follows. Let n: R x R " +  R denote the projection ~(4, x) = 4, (4, x)~ R x R" and 
consider the sets QB and (~n as follows: 

QB = {4, x ) e R  x R n I A B x B - ) f  = b, xB > 0, x N = 0}, 

QB = {(4, x ) e R  x R"IABxB -- 4[) = b, xB > O, X N = 0}.  

Then the sets F(B) and F(B) are the projection sets n(QB) and rc((~B), respectively. 
The following lemma relates the projection sets F(B) and F(B) to the sets A(B, N) 
and A(B, N), N = { 1 . . . .  , n} - B, when (B, N) is an optimal partition. 

LEMMA 3.1. Let  (B, N) = (B(4*), N(4*))for some 4" ~ [~, fl]. Then: 

(a) A(B, N) = F(B). 
(b) A(B, N) = r'(S). 
(c) X(4) = )?~(4)for all 4 e I'(B) (and hence for  all 4 ~ A(B, N)). 

PROOV. Note first that Proposition 2.2 easily implies that (B, N) = (B(2), N(2)) if 
and only if XB(2 ) ~ ~ and Y~ ~ ~ .  Clearly, Y~ ~ ~Z~ since (B, N) = (B(2*), N(2*)) 
by assumption. These two observations imply (a). We next show (b) and (c). By 
complementary slackness condition, Jfs(2) ~ ~ implies Y, ~ Y(2) which implies 
that X(2) = XB(2 ). This shows (c). Clearly, (c) implies that B(2) ___ B for all 2 ~ ['(B). 
Hence, F(B) ___ A(B, N). The inclusion F(B) _~ A(B, N) is immediate since B(2) __ B 
implies ~ ~ X(2) - J?B(~)(2) -~ J(B(4). Hence (b) follows. [] 

LEMMA 3.2. Let  B ~_ {1 . . . .  , n} be given. Assume that F(B) r ~ and let 4" ~ F(B). 
Then: 

(a) F(B) = {2*} i f  and only ifOCranoe(AB). 
(b) F(B) is an open interval (containing 2*)/f  and only if  D E range(As). 
(c) F(B) = cl(C(B)). 

PROOF. Consider the sets QB and QB and the projection n(2, x) = x mentioned 
before the statement of Lemma 3.1. We know that n(Qs) = F(B) and n(QB) = F(B). 
Since both Q~ and Q~ are convex sets and n is linear, it follows that both F(B) 
and r'(B) are convex sets and hence intervals. We first show (c). Clearly, since 
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Q8 r ~ ,  we have QB = cl QB. Since rc is continuous, this implies that F(B)= 
7t(Qn) _~ cl rc(Qn) = cl F(B). Next, observe that ]~(B) is closed since Q8 is a poly- 
hedron and n(0n) = F(B). Since F(B) ~ F(B), it follows that cl F(B) ~ F(B). Hence 
(c) follows. We next show (a) and (b). Assume first that/~ r range(AB). We will show 
that F(B)--{2*}. Indeed, since 2* e F(B), we have b + 2*bsrange(An). Since 

r range(AB), we can easily see that b + 2b r range(An) for any )~ ~ 2*. Therefore, 
Xn(2) = ~ for any 2 r 2" which implies that F(B)= {2*}. Assume next that 

e range(An). We will show that F(B) is open and hence an open interval. Indeed, 
let 2~F(B). Then we have A~xn = b + 2---b for some xneRl+~+ I . Also, since 
b~range(Ag), we have Anu = b for some u ~ R  Inl. Since 2n + Ou > 0 for all 
sufficiently small real number 0 and A~(xn + Ou) = b + (2 + 0)6, it follows that 

+ 0 e F(B) for all suff• small 0. We have thus shown that any 2 e F(B) has 
a neighborhood contained in F(B). Hence, F(B) is an open interval. This completes 
the proof of (a) and (b). [] 

LEMMA 3.3. The point 2 ~ [~, fl] is a breakpoint of r that is, )~ = )~i for some 
i~ {0, 1 . . . . .  k} if and only if[~ r range(An) where B = B(2). 

PROOV. Let B = B()~) and N = N()~). Clearly, ~. e [e, fl] is a breakpoint of ~p(2) if 
and only if r > ~0"(2). By Proposition 2.4, the condition ~o'+(2) > r is 
equivalent to the condition that the linear function y ~ bry is not constant on the 
optimal face Y(2)= {y lA~y  = cB; A~y  < cN}. Since, by definition, the true 
equalities for the face Y(2) are the inequalities of the system A~y < c N, it follows 
from Proposition 2.1 that y ~ g r y  is not constant on Y(2) if and only if 
b ~ range(AB). Therefore, the result follows. [] 

We are now in a position to prove Theorem 3.1. 

PROOF OF THEOREM 3.1. Statement (a) follows immediately from statements (a) 
and (b) of Lemma 3.1, statements (a) and (c) of Lemma 3.2, and from Lemma 3.3. 
We next show (b). We first show that ~.(B, N) _ [21_ 1, 2i]. By Proposition 2.3, it 
is enough to show that ~o(2) is affine linear on A(B, N). Indeed, consider an arbitrary 
point y in Y(2*). From (3.1), it follows that y~ Y(2) for all 2~ ~.(B, N). Hence, 
r = (b + 2b)Ty for all 2 ~ A(B, N) which proves our claim. By (a) of Lemma 3.1, 
(b) of Lemma 3.2, and Lemma 3.3, we know that A(B, N) is an open interval, say 
(7, 6). Since A(B, N ) c  [2i-1, )~i], we have (7, 6)_~ (~'i-1, ~'i)" We next show that 
7 = 2i_ 1. Consider the optimality interval A(7 ) - A(B(7), N(7)). Clearly, A(7) is not 
an open interval since otherwise A(B, N ) ~  A(7)r ~ which is a contradiction. 
Therefore, we must have 7 = )~i- 1 since otherwise we would have y e (2~_ 1, 2~) and 
by the arguments above A(7) would be an open interval. The proof that 6 = 2 i is 
analogous. Hence A(B, N) = (21_ 1, 21). From (b) of Lemma 3.1 and (c) of Lemma 
3.2, it follows that A(B, N) = [)~i_ 1, 2i]. [] 

Theorem 3.1 has a number of consequences which we now point out. 

COROLLARY 3.1. For i e {1 . . . . .  k}, all Y(2), B(2), and N(2) with 26(21_a, 2i) do not 
change. 
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PROOF. Immediate from Theorem 3.1. [] 

Henceforth, for all 2 �9 (2i_ ~, 2i), we denote the dual optimal faces Y(2) and the 
index sets B()0 and N()~) by Y,., B~, and Ni, respectively (i t {1, . . . ,  k}). Another 
consequence is the following. 

COROLLARY 3.2. For ie  {1, . . . ,  k}, we have: 

(a) B(2i-1) and B(2i) is contained in Bi properly. 
(b) N(2~o 1) and N(21) contain Ni properly. 
(c) Y(2i-1) and Y(2i) contain Yi properly. 
(d) I1(20 ~ Y(;Q =- ffJ for all i, j 6 {0, 1 , . . . ,  k} with ]i - Jl >- 2. 
(e) Y(,Z,_ 1)c~ Y(,~) = ~. 
(f) All dual optimal faces Yi, i t  {1 . . . .  , k}, are disjoint. 

PROOF. Clearly, statements (a), (b), and (c) are equivalent and they follow directly 
from Theorem 3.1 and the definition of the sets A(B, N) and A(B, N). We next 
show (d). We may assume without loss of generality that 2e < 2j. First observe that 

J J 
~o( 0 - ~o(~,) = F~ g , (a ,+a  - ;~,) > a ,+1  Z (:~,+1 - ,~,) = o , + 1 ( , ~  - ~,). 

1 = i + 1  1 = i + 1  

To show (d), let y s Y(2i) be given. Then q~(2~) = bry + )LiDTy and, by Proposition 
2.4, we also have 9i+1 > f)ry. Hence, 

(fl("~j) > (P('~i) q- gi+ l('~j - -  )el) ~ (bry + 2~f)ry) + (/3ry)(2j _ 2~) = bry + 2jf)ry, 

which implies that  y r Y(2j). Thus, Y(2~) m Y(2j) = ~ and (d) follows. We next 
show (e). Clearly, by (c), Y(2i- 1) ~ Y(2i) _~ Y/. To show that Y(,ti- 1) c~ Y(2i) ~ Yi, 
let y t  Y(~-i- 1) n Y(2i) be given. Then q~(2i- 0 = bry + 21-1[~ry and q~(2i) = bry + 
2ibry. Since ~o(2) is affine linear on [2i_ i, 2~3, we can easily show that ~o(2) = bry + 
2/~ry and hence that  y �9 Y(2) for any 2 �9 (2~_ 1, 2~). Since Y~ = Y(2) for 2 s (2i- 1, 20, 
we have y �9 Y~ and (e) follows. Statement (f) follows immediately from statements 
(c) and (d). [] 

It follows from (a) of Corollary 3.2 that B(21_1)~ B(21)_~ B~ for i t  {1, . . . ,  k}. 
We leave the reader to verify that  this inclusion may  be proper for certain instances. 

Yet another  consequence of Theorem 3.1 is the following condition on the primal 
optimal faces X(2). 

COROLLARY 3.3. For all i � 9  {! . . . . .  k} and 7 t [0, 1], we have 

(1 - ~,)x(,~,_ 0 + ~,x(;O =_ x ( ( 1  - 7 ) , ~ , -  1 + 72.i). 

PI~ooF. Let x ~- 1 e X(2i_ i) and x i �9 X(2i). Let x(7) = (1 - 7)x ~- 1 + ~x ~ for 
e [0, 1]. Clearly, x(7) is a feasible solution for problem (P~) with 2 = (I - ~))~i- 1 + 
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~2i. Moreover, if we let h(7) = crx(7), we have that h(0) = ~P(~-i- 1), h(1) = q~(2i) and, 
since both h and ~0 are affine functions on [21_1, ~-i], we must have h(7)= 
~0((1 - ?)2i_ 1 + 72~) for all 7 t [0, 1]. Hence, x(?) t X((1 - 7)2~_ ~ + 72~) for all 
7 t [0, 1] and the result follows. [] 

Corollary 3.3 ensures that if we know optimal solutions corresponding to two 
consecutive breakpoints, then we can determine optimal solutions corresponding 
to any 2 between these breakpoints. 

Finally, we briefly comment on the similarities and differences between the 
results above and the existing theory of parametric RHS LP. Recall that the key 
to the analysis of the parametric RHS LP problem in the existing theory is fi~(B, N) 
where B is assumed to be a primal-dual basic vector with respect to (P~) for some 
At [~,fl] and N = {1 . . . .  , n } -  B. In particular, it has been shown (see, for 
example, Chapter 8 of [9-]) that there exists a sequence of adjacent basic vectors 
/~ . . . . .  /~l and points ~ = 20 < ,~ < ... < 2~_ 1 < ~-I = fl such that 

a(Bz, Ni) c~ A(/~+~, b~+l) = {2~}, i = 1 . . . . .  l -  1, 

l 

(.J A(Bi, Ni) = [~, fl], 
i = l  

where Ni = {1, . . . ,  n} - /~ i  for i t  {1, ._., t}. Indeed, under primal and dual non- 
degeneracy, the sequence of numbers 2 i and the pair of index sets (/~i, 57i) above 
are uniquely determined and they are precisely the sequence of numbers 2~ and 
the optimal partitions Bi, respectively, as described in the results above. The 
differences between the two theories stem from the presence of primal and/or dual 
degeneracies in the parametric RHS LP problem (P~), ~ t R. In fact, while the 
partitions (Bi, Ni) and (B()oi), N()@ as described above are uniquely defined, the 
sequence of adjacent primal-dual basic vectors /~i, i t  [1 , . . . , l ] ,  are no longer 
uniquely defined. Actually, it is possible to have a subsequence of intervals ~.(/~) 
consisting of the same point (breakpoint) or a subsequence of these intervals 
covering an interval between two consecutive breakpoints. The significance of 
these differences will become more apparent in the discussion at the end of 
Section 4. 

4. An Algorithm for the Parametric RHS LP Problem. In this section we present 
an algorithm for the parametric RHS LP problem. During the run of the algo- 
rithm, a sequence of LP problems is generated in such a way that the solution of 
one problem determines the next one to be solved. By solving this sequence of LP 
problems, we also obtain the solution to the given parametric RHS LP problem. 
As in the parametric RHS LP pivot algorithm, given a parameter 2* E [~, fl] (see 
Proposition 2.3), the algorithm looks for the breakpoints of cp(2) first in one side 
of 2" and then in the other side of )~*. 

By solving the parametric RHS LP problem, we mean: 

(1) Find e and fi satisfying the conditions of Proposition 2.3. 
(2) Determine whether ~o([:~, fi]) = { -  m}. If so, the solution to the parametric 
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RHS LP problem is completely specified and we stop. Otherwise, we have 
q~([c~, fl]) _ R and we continue to find the following additional information: 

(a) the breakpoints ~ = 2 o < 21 < --. < ~k = fl of the function ~0(2); 
(b) the slopes g, such that  9i = ~0'(),) for 2E(2~ 1, 2,), i e  {1 . . . . .  k}; 
(c) the optimal partitions (B,, N,) such that  (B,, N,) = (B(2), N(2)) for 2 e (2,_ 1, 

i {1,  . . . ,  k}; 
(d) the optimal partitions (B(;~i), N(2/)) for i e {0, 1 . . . . .  k}; 
(e) x i6  X(2i) for i e  {0, 1 . . . . .  k}; 
(f) yi e Yi for i E { 1 . . . . .  k}. 

If we are interested in just finding the values q~(2) for all 2 e [ct, fl], all we need 
is (a) and (b) together with the value ~0(2") for some 2* e [c~, fl]. Points in the sets 
X(2) and Y(~,) for all 2 e [c~, fi] can be obtained from information (e) and (f) by 
using the results of Corollaries 3.2 and 3.3. 

In order to construct an algorithm that produces the required information, we 
present below some results which are consequences of the theory developed in 
Section 3. 

As a consequence of Theorem 3.1 and the lemmas preceding it, we have the 
following observation. Given the optimal partition (Bi,  N i )  , i ~ { 1 . . . . .  k}, we may 
compute the optimality interval A(B i, Ni) = (2/_ 1, 2i) by solving the following LP 
problems: 

(BR mi~) 2i_ 1 = m i n { 2 I A B x B , -  )J~ = b; xB, _> 0}, 

(BR max) 2 i = max{2[ABxB, -- 2f~ = b; XB, > 0}. 

We may also compute the index sets B(2,_ 1) and B(2,) by using "the following 
corollary of Theorem 3.1 and Lemma 3.1. 

COROLLARY 4.1. The index set B(2i_ 1) (resp. B(2/)) is the set of  all indices j 6  B i 
such that xj >_ 0 is a true inequality for the optimal face of  problem (BR rain) 
(resp. (SRmax)). 

PROOF. From (c) of Lemma 3.1 and the fact that 2,_ 1, 2, e A(Bi, N,), the optimal 
faces of problems (BR rain) and (BR max) are respectively 

optimal face of(BR rain) = {xBlx e X(2,_ 1)} x {2,_ 1}, 

optimal face of(BR re"x) = {x ,  lx e X(2,)} x {2,}, 

from which the result easily follows. [] 

Let 2,, i ~ {1 . . . . .  k}, be a breakpoint of ~o(2) and consider the two LP problems 
(see Proposition 2.4) as follows: 

T (SL rain) min{/~ryl y e Y(2,)} = min{brylAT(x,)y = cB(x,); AN(x,)y < CU~x,)} , 

T (SL~ ~x) max{/~Ty[ y e Y(2,)} = max{bTylAT(z,)y = CB(ai); ANtz,)y < CN(,~,) }. 
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We then have the following result. 

THEOREM 4.1. The optimal faces of problems (SL rain) and (SL max) a r e  equal to the 
optimal faces Y~ and Yi + ~, respectively. 

PROOF. Let Y~ denote the optimal face of (SL~'~"). To show that Yi = Y~, we only 
need to show that Yi = Y(2) for some 2 e (2i-~, 21). First note that since ~o(2) is 
affine linear on [2i- 1, 2i], we have 

~0(2) = ~o(2,) + (2 - ~.3~,o'(2) 

(4.1) = qo(2i) + (2 - 21)9, 

for any 2 ~ (hi- 1, )Li)" We first show that Yi ~ Y(2). Let j9 s Yi be given. Then 13 e Y(21) 
and brj9 = gi by Proposition 2.4. Therefore, 

(b + 2/~)r/~ = (b + ;t~b)Wp + (4 -- 2~)[)Wp 

- -  ~o(2i) + (2 - ,ti)g~ = ~o(2), 

which implies that ~ e Y(2). We next show that Y(2)__ Yi. Let 1~ e Y(2). Then 
29 e Y(21) by Corollary 3.2 and (b + 2b)T39 = r Therefore, 

gTR = [ (b  + ,~b) T - (b + 2ig)T29]/( , t  - 2 3  

= [~o(2) - ~o(2i)2/(2 - 2 3  = Oi. 

Since, by Proposition 2.4, 9i is the optimal value of (sLmin), if follows that 33 s Yi. 
We have thus shown that Yi = Y~. The proof that the optimal face of (SLp aX) is 
equal to Y~+ 1 is analogous. [] 

As a consequence of the previous result, we have the following corollary. 

COROLLARY 4.2. The set of true inequalities for the optimal face of problem (SL min) 
(resp. (SLmax)) is the set of all inequalities Ar y ~ ci with j E B i (resp. j ~ Bi+ O. 

PROOF. Immediate from Theorem 4.1. [] 

Using the results above, we are now in a position to construct an algorithm to 
solve the parametric RHS LP problem (Pz), 2 ~ R. The basis for this algorithm is 
an oracle, which for brevity we call Oracle A, for the following strong version of 
the LP problem. 

ORACLE A. Given the following LP problem, 

(P) min{cTxlAx < b; Cx = d}, 

decide if (P) is infeasible, unbounded, or finite. If (P) is finite, find the set of true 
inequalities A'x < b' for the optimal face of (P) and a pair of primal and dual 
optimal solutions for (P). 
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Clearly, if we provide as input to Oracle A any of the problems (P~) with 
2 e [ct, fl], as in Section 2, we obtain the optimal partition (B(2), N(2)). We discuss 
later how to implement such an oracle based on any LP solver. 

We now describe the parametric RHS LP algorithm based on the results 
presented above. Assume that we have solved problem (Pa) for some 2 s [e, fl], 
say 2 = 2*. Determine if 2* is a breakpoint by checking whether/3 e range(A~(~.)). 
For simplicity, assume that 2* is not a breakpoint and hence that 2*e  (2i-1, 2i) 
for some i e  {1 . . . . .  k}. We describe how to find the necessary information to the 
right of 2", that is, for all values 2 e  [2", fl]. Clearly, 2~ can be determined as 
)'i = max{2IABXB -- 2b = b; x B > 0}, where (B, N)  - -  (Bi ,  N i )  = (B(2*), N(2*)). 
Moreover, by Corollary 4.1, the set of true inequalities for the optimal face of this 
LP subproblem determines the optimal partition (B(2i), N(2i)). At the breakpoint 
2~, it follows from Proposition 2.4 that we can compute the slope gi+l as 
gi+l = m a x { f ~ r y l A r y  = CB; A r y  <- cN} where now (B, N) -= (B(2~), N(2~)). More- 
over, by Corollary 4.2, the set of true inequalities for the optimal face of this LP 
subproblem determines the optimal partition (B~+ 1, N~+ 1). We are now in the same 
position as at the start and, by repeating the cycle described above, the breakpoints 
2i . . . . .  2 k and the slopes g~+~ . . . . .  gk will be determined consecutively. Note that 
the sequence of subproblems that are solved consecutively is (according to the 
notation adopted previously) (BRpax), (sLmax), ( B R i e f ) ,  (SLI~]) . . . . .  (BR~aX), and 
(SLy"X). The information to the left of 2* can be found in a similar way by using 
a suitable sequence of LP subproblems in minimization form, more specifically 
the sequence (BRmi"), (SL'~i-q), (BRmi]),  rain (SLi_2) . . . . .  (BR~ai"), and (SL'~n). The 
situation for the case in which 2* is a breakpoint is very similar to the one above 
and therefore the details are omitted. 

We next discuss how we can implement Oracle A. Toward this end, we first 
state a result presented in [3] which shows how to identify the set of true 
inequalities of a system of linear constraints by solving exactly one LP problem. 
Consider the following system of linear constraints: 

(4.2) A x  <_ b, C x  = d, 

where A E R m • C s R p • b e R m, and d E R p and consider the following LP 
problem associated with (4.2): 

(4.3) 

maximize eTu 

subject to A x + u - b e < _ O ,  

C x  - ad = O, 

O < u < e ,  

~ > 1 ,  

where the variables are x E N", u ~ N", and c~ e R, and e E N" is the vector of all 
ones. Note that if problem (4.3) is feasible then it is finite. We can state the result 
as follows. 
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PROPOSITION 4.1 [3]. The system (4.2) is feasible if and only if the LP problem 
(4.3) is feasible (and hence finite). In this case, any optimal solution (2, fi, ~) of(4.3) 
satisfies 

0={10 if the ith inequality of Ax <_ b is a true inequality of(4.2), 

otherwise. 

Furthermore, 2/~ is in the relative interior of the polyhedron defined by (4.2). 

Hence, an optimal solution of (4.3) completely determines the set of true 
inequalities of (4.2). For further discussion on how to identify the set of true 
inequalities of a linear constraint system see the brief note by Freund et al. [3]. 
Using the previous proposition, we can now discuss two approaches to implement 
Oracle A. 

APPROACH 1. Solve the LP problem (P) and let 0* denote the optimal value of 
(P). Next, apply the result of Proposition 4.1 to obtain the set of true inequalities 
of Ax _< b, Cx = d, and crx = 0". The resulting true inequalities are exactly the 
true inequalities for the optimal face of problem (P). 

APPROACH 2. Combine both the primal and dual problems to obtain an equi- 
valent feasiblity problem in the form of a linear constraint system and apply the 
result of Proposition 4.1 to determine the true inequalities of this system. Those 
inequalities of Ax < b that are true inequalities for the above system are exactly 
the true inequalities for the optimal face of problem (P). 

As a consequence of the above discussion, we obtain the following complexity 
result. 

THEOREM 4.2. I f  there are k breakpoints in the piecewise linear function q0(2) 
(describing the optimal objective value as a function of the single parameter 2for the 
right-hand side vector), then the complexity of generating the entire function and the 
optimal faces is O(kZ) where Z is the complexity of solving a single LP of the same 
dimension. 

Assume that the data of the parametric RHS LP problem is rational and let L 
denote the size of the problem, that is, the number of bits required to represent 
the data of the problem. It has been shown in [8] that there exists a class of 
parametric problems with a constraint matrix of dimension n x 2n (n = 1, 2, ...) 
for which O(L) -- n and the number of breakpoints k of (p()C) is exponential in n. 
Hence, the parametric RHS LP problem clearly cannot be solved in a time 
bounded by a polynomial function of n and L. However, if k, the number of 
breakpoints of q)(,~), is bounded by a polynomial function of L and n, then it follows 
from Theorem 4.2 and the existence of polynomial algorithms for solving LP 
problems that the parametric RHS LP problem (4.1) can be solved in polynomial 
time. The above result is clearly an improvement over the complexity of the based 
simplex algorithm for the parametric RHS LP problem. Roughly speaking, the 
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sequence of basic vectors generated by the parametric RHS LP simplex algorithm 
can be viewed as solving alternately the LP problems (BR m"x) (or (BRmin)) and 
(SL m"x) (or (sLmin)). However, this algorithm may generate an exponential number 
of basic vectors to solve any one of these LP problems which is a property shared 
by some variants of the simplex algorithm. It is exactly under these circumstances 
that our parametric RHS LP algorithm may show substantial complexity improve- 
ment if Oracle A is implemented via a polynomial-time LP algorithm to solve the 
LP problems (BR re"x) (or (BRmln)) and (SL max) (or (sLmin)). 

5. Remarks. In this section we provide some remarks as follows. 
(1) Both of the approaches mentioned above to implement Oracle A have 

practical drawbacks. The first one involves solving two LP problems while the 
second one combines two LP problems into a larger one. We believe that a more 
promising approach is to solve the given LP problem by an interior-point method 
and be able to determine the set of true inequalities for the optimal face upon 
termination of the algorithm. This belief is justified by the fact that some 
interior-point methods are guaranteed to generate a sequence of interior points 
converging to (or accumulating at) some interior point in the relative interior of 
the optimal face of the LP problem. Interior-point path-following algorithms using 
short step size can be shown to satisfy this property. However, the assumption of 
using short step size is still very restrictive and most of the algorithms implemented 
in practice use long step size. In ]-2], an interior-point algorithm, known as the 
affine-scaling algorithm, which uses long step size, was shown to converge to the 
relative interior of the optimal face under primal nondegeneracy assumption. 

(2) It should be noted that the knowledge of the optimal partition (B, N) of an 
LP provides extra information on the nature of the set of all optimal solutions. 
We believe that this extra information can be valuable for LP practitioners and 
should be a welcomed addition to the analysis of any parametric RHS LP problem. 

(3) It is easy to see that under primal-dual nondegeneracy the following 
statements are true: 

(a) X(2) is a singleton consisting of a vertex of the polyhedron {x[Ax = b + 2[~, 
x > 0} for all 2 ~ [~, fl]. 

(b) Y(2) is a singleton consisting of a vertex of the polyhedron {ylAry <_ c} for 
any 2 e(2i_1, 2i) and i e {1 . . . . .  k} and Y(2) is an edge of the polyhedron 
{ylAry <_ c} for any 2E {20, 21,. . . ,  2k}. 

(c) Bi is the unique primal-dual feasible basic vector associated with the vertex 
Y(2) for any 2 ~ (2i_ 1, 2i) and i E { 1 . . . . .  k}. 

Thus, under primal and dual nondegeneracy, the LP problems (BR re"x) (or 
(BRmi")) and (SL re"x) (or (SL~i")) can be solved trivially as follows. Solving the LP 
problem (BR mi") and (BR~ "x) in this case means findirig the optimality interval for 
the basic vector B i which can be easily computed by using a ratio test procedure 
(see, for example, Chapter 8 of [9]) in O(n) arithmetic operations. The LP problems 
(SL m~") and (SL re"x) in this case involves minimizing a linear function over an edge 
of the polyhedron {y]ATy <_ c}. Thus, this LP problem can be easily solved by 
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means of a pivot step (in O(n 2) arithmetic operations) which is exactly the step 
performed by the parametric RHS LP simplex algorithm. 

Hence, under primal and dual nondegeneracy, both approaches execute the 
same steps to cover the interval [~, fl]. 
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