
Discrete Applied Mathematics 44 (1993) 21-38

North-Holland

21

Monge and feasibility sequences in
general flow problems

Ilan Adler

IEOR Department, University of California, Berkeley, CA 94720, USA

Alan J. Hoffman

Mathemcltical Sciences Department. IBM T.J. Watson Research Center. P. 0. Box 218, Yorktown

Heights, NY 10598. USA

Ron Shamir*

Deportment of Computer Science, Suckler Faculty oJ”E.wct Sciences. Tel Aviv University, Tel Aviv 69978,

Isruel

Received 10 December 1990

Revised 14 February 1992

Abstract

Adler, I., A.J. Hoffman and R. Shamir, Monge and feasibility sequences in general flow problems,

Discrete Applied Mathematics 44 (1993) 21-38.

In a feasible transportation problem, there is always an ordering of the arcs such that greedily sending

maximal flow on each arc in turn, according to that order, yields a feasible solution. We characterize

those transportation graphs for which there exists a single order which is goodfor all feasible problems

with the same graph. The characterizations are shown to be intimately related to Monge sequences and

to totally balanced matrices. We describe efficient algorithms which, for a given graph, construct such

order whenever it exists. For a transportation problem with corresponding mxn bipartite graph with e

arcs, we show how to generate such an order in O(min(e log e,mn)) steps. Using that order, the feasibil-

ity question for any given supply and demand vectors can be determined in O(m+n) time.

We also extend the characterization and algorithms to general minimum cost flow problems in which

the underlying graph is nonbipartite, and the sources and destinations are not predetermined. We

generalize the theory of Monge sequences too to such problems.

Keywords. Network flow, greedy algorithms, Monge sequences, totally balanced matrices, chordal

bipartite graphs, transshipment problems.

Correspondence IO: Dr. R. Shamir, Department of Computer Science, School of Mathematics, Tel Aviv

University, Tel Aviv 69978, Israel. email: shamir@math.tau.ac.il.

* This work was done while this author was a visitor at RUTCOR, Rutgers University, NJ. Supported

by AFOSR grants 89-0512 and 90-0008, and by NSF grant STC 88-09648.

0166-218X/93/$06.00 0 1993 - Elsevier Science Publishers B.V. All rights reserved

22 I. Adler et al.

1. Introduction

The transportation problem is one of the fundamental problems of combinatorial
optimization. It can be stated as follows: A commodity available at certain sources
must be shipped to satisfy demands at some destinations. Shipping costs per unit
from each source to each destination are known. Given the amount of commodity
available at each source and the amount required at each destination, the problem
is to determine how much to send from each source to each destination so that all
supplies and demands are met and the total shipping cost incurred is minimum.
When not every source can ship to every destination, we say that the problem is
restricted and call the excluded source-destination pairs inadmissible. For a recent
survey on algorithms for transportation and related network flow problems, see [3].

The greedy algorithm has the obvious advantage that it is very fast (its number
of operations is at most linear in the problem dimensions), but in general its output
sends the maximum possible amount of flow directly from the source to the
destination, and updates the supplies and demands accordingly. The “north-west
corner rule” and the “minimum C, rule” are two well-known examples of such a
greedy algorithm (see, e.g., [17]). We assume that the greedy algorithm scans the
arcs in a predetermined order which is independent of the supplies and demands.
In principle, every permutation of the admissible source-destination pairs can be
used by that algorithm.

The greedy algorithm has the obvious advantage that it is very fast (its number
of operations is at most linear in the problem dimensions), but in general its output
is insufficient. Depending on the permutation and on the supplies and demands, the
solution produced by the greedy algorithm may be optimal, feasible, or infeasible.
In restricted problems, a permutation may produce an infeasible solution even when
the problem is feasible. Our interest here is in those cost matrices for which there
exists a single permutation which resolves the feasibility issue for all possible
supplies and demands. Namely, the greedy algorithm with that permutation
produces a feasible solution whenever the supplies and demands are such that the
problem is feasible. We call such a permutation a feasibility sequence. Similarly, if
the greedy algorithm using a permutation produces an optimal solution for every
feasible problem, we call such permutation an optimality sequence. If the sources
and destinations can be reordered so that the source-destination pair (i, j) precedes
(k,l) in the permutation whenever ilk and jsl, we say that the permutation is
lexicographic. For example, the permutation used by the “north-west corner rule”
is lexicographic.

There are several reasons to study those problems. From the practical point of
view, the availability of an optimality sequence is very useful whenever one needs
to solve several problems with the same costs, but with varying supplies and
demands: Given an optimality sequence, each problem is solvable in linear time.
While randomly chosen cost matrices very seldom admit such sequences, “real”
problems often tend to have that property (see the ensuing literature survey).

Monge and feasibility sequences 23

Another theorectical motivation for this study (which can be stated only in hind-

sight) is the discovery of intimate interconnections between problems which admit

feasibility sequences and well-studied objects from graph theory.

Optimality sequences for transportation problems have been studied in the past.

Hoffman [19] proved that for the cost matrix of an unrestricted problem, a sequence

is an optimality sequence if and only if it satisfies the Monge property. (A definition

of this property will be given in the next section.) Dietrich and Shamir [8,27] (see

also [28]) generalized the characterization to restricted transportation problems.

Many families of matrices with special structure which implies the Monge proper-

ty (and hence can be solved greedily) have been studied in the past. Some examples

from the operations research literature include the assignment problem arising in the

polynomially solved traveling salesman problem studied by Gilmore and Gomory

[14], warehousing problems [19], scheduling problems [4,18] and transportation

problems [6,21]. In computational geometry and robotics, totally monotone

matrices ([l], see also [2] and the references thereof) have recently received a lot of

attention, and were shown to be amenable to very efficient search techniques.

Matrices which admit lexicographic optimality sequences turn out to be totally

monotone. Recently, interest in the question of speeding up dynamic programming

has rekindled, due to important applications in molecular biology and string mat-

ching. Several studies have shown that in those applications, a certain convexity (or

concavity) condition holds in the costs matrix, which allows dynamic programming

to be sped up considerably (see, e.g., [9]). In particular, that condition implies the

existence of a lexicographic optimality sequence.

The question of constructing an optimality sequence for a given matrix have been

studied by Chandrasekaran [7], for the special case where the sequence is lexico-

graphic (see also [15]). Alon, Cosares, Hochbaum and Shamir [5] provided an

efficient algorithm which finds an optimality sequence or determines that no such

sequence exists for unrestricted problems. Dietrich and Shamir [8,27,28] genera-

lized the algorithm to restricted transportation problems.

The main results of this paper are the following:

l In Section 3, we give two necessary and sufficient conditions under which a per-

mutation is a feasibility sequence for a given transportation network. The condi-

tions are closely related to the Monge condition for optimality sequences.

l Section 4 extends the theory of feasibility and optimality sequences beyond the

transportation problem, to any uncapacitated minimum cost flow problem. This re-

quires first an appropriate generalization of the definitions of such sequences in

nonbipartite graphs, which is achieved by considering shortest paths rather than

direct arcs between sources and destinations. We characterize the flow problems

which admit optimality sequences, and those which admit feasibility sequences. The

characterizations lead to efficient algorithms for constructing optimality and

feasibility sequences in general flow problems.

l In Section 5 we point out some interesting connections between feasibility se-

quences and certain well-studied graph theoretic concepts. We prove that a bipartite

24 I. Adler et al.

graph admits a feasibility sequence if and only if it is chordal bipartite (or,
equivalently, if and only if its adjacency matrix is totally balanced). Using this rela-

tion, we show that a feasibility sequence for a transportation matrix can be con-
structed in O(min(elog e,mn)) steps. We also show that whenever a feasibility
sequence exists, a lexicographic one exists, and in that case the greedy algorithm can
find a solution in optimum time. Finally, we generalize these results to the nonbipar-
tite case.

2. Preliminaries

Let G = (V,, V&E) be a bipartite graph whose two vertex sets are V, and V,,
where 1 V, j = n, 1 V,) = m and JE 1 = e. Denote by F= V, x V, -E the set of inadmis-
sible arcs. Let C be an n x m transportation cost matrix corresponding to the graph.
For an arc (i, j) E E, Cij is the finite, nonnegative cost of shipping each unit on that
arc. When arc (i, j) is inadmissible, we also set C, = 03. The pair (G, C) is called a
transportation network. (Note that the notation (G, C) is redundant: All the infor-
mation on the graph G is contained in C, since (i, j) E E if and only if Cij< 0~. We
include G explicitly since it will be useful later.)

Denote by P(C, a, b) the uncapacitated transportation problem with the cost
matrix C and supply and demand vectors a and b respectively. I.e.,

s.t. c
{j (U,j)EE)

Xij=a;, i=l n, , -..,

c Xij=bj, jzl,..., m, (P(C, a, bN

{i ((i,j)EEl

XijlO, (i, j) E E.

We assume throughout that the supplies and demands are nonnegative, that
C”= 1 ai = C,y=, bj, and that n 5 m. We also assume that the underlying undirected
graph is connected, so in particular ezm. We say that a and b are feasible for the
network if P(C,a, 6) has a feasible solution. If F#0 we say that the problem is
restricted. An obvious necessary condition for feasibility of P(C,a, b) is that
Cl=i ai = Cy=, bj. For unrestricted problems, this condition is also sufficient.
However, in restricted problems, it is not immediate to determine feasibility.

Let S be a permutation of the admissible arcs. For a problem P(C, a, b), the
greedy algorithm maximizes each variable in turn, according to the order given in
S. A formal description is the following. (Initially, xij = 0 for all (i, j) E E.)

Algorithm GREEDY(S);

begin

Monge and feasibility sequences 25

For i=l,...,e do
begin let Si = (r, s).

x,, + min {a,, b,)
,+,-x,,
b,+b,-x,,

end

end

When the algorithm terminates, a feasible solution has been obtained if and only
if all supplies and demands have been reduced to zero. In general, termination
without a feasible solution does not imply infeasibility. Obviously, for every feasible
problem there exists a permutation S which gives a feasible solution. (In fact, there
exists one which also gives an optimal solution.) We focus our attention here on net-
works for which there is a single permutation which is good for all supply and de-
mand vectors. More precisely, call a permutation S of the admissible arcs an
optimality sequence (respectively, a feasibility sequence) for the network (G, C) if
for every feasible pair a, b of supply and demand vectors, GREEDY(S) provides
an optimal (respectively, feasible) solution to P(C, a, b). In particular, termination
of GREEDY(S) with an infeasible solution implies the infeasibility of the problem.
Obviously, every optimality sequence is a feasibility sequence, but the converse is
not necessarily true. The optimality (respectively, feasibility) sequence problem is
the following: Given a transportation network, construct an optimality (respec-
tively, feasibility) sequence for it or determine that no such sequence exists.

Our questions here are motivated by Hoffman’s theory of Monge sequences. A
permutation S of the admissible arcs is called a Mange sequence for C if the fol-
lowing condition is satisfied:

For every i, k E 5 and j, 1~ V,, such that (i, j), (i, I) and (k, j) are admissible:
(1) If (k, I) is inadmissible then (i, j) does not precede both (i, 1) and (k, j) in S.
(2) If (k, /) is admissible and (i, j) precedes (i, I) and (k, j) in S, then CU+ Ck,5

Ci[+ C,j.
Condition (1) depends only on the graph structure, and involves 4-tuples i, j, k, 1

which contain one inadmissible arc. In 4-tuples containing two or more inadmissible
arcs, no conditions are imposed. Condition (2) depends on the finite costs, and it
involves only 4-tuples in which all arcs are admissible. (Formally, the two conditions
could be stated together by requiring that for every 4-tuple i, j, k, I, Cij+ C~(I
Ci, + C~j, where for sums involving infinity one defines 00 + a = 00 for every finite

* WI.)
The following theorem summarizes the knowledge on the optimality sequence

problem in transportation networks:

Theorem 2.1. (a) (Hoffman [19], Shamir and Dietrich [28]) S is an optimality se-
quence for (G, C) if and only if it is a Mange sequence for C.

(b) (Alon et al. [5], Shamir and Dietrich [28]) The optimaIity sequence problem
is solvable in O(en log n).

26 I. Adler et al.

3. Feasibility sequences

We first turn to the problem of characterizing feasibility sequences: Given a cost
matrix C, define its skeleton matrix C to be the matrix obtained by replacing all the
finite costs in C by ones. I.e., ~;j = 1 if and only if (i, j) E E, and ~jj= 03 if and only
if (i, j) E F. The skeleton matrix of a transportation graph is defined analogously.
The following theorem follows from Theorem 2.1(a):

Theorem 3.1. S is a feasibility sequence for a bipartite graph G if and only if it is
a Mange sequence for its skeleton matrix C.

Since the existence of a feasibility sequence depends only on the structure of the
underlying graph and not on the finite costs (i.e., only on condition (1) in the defini-
tion of a Monge sequence), we shall call S a feasibility sequence for the graph G.
We shall also denote the feasibility problem P(G, a, b) to emphasize its dependence
on the graph structure only.

Using Theorem 3.1, one can apply the algorithms of [28] to c in order to solve
the feasibility sequence for a given transportation graph. With such a sequence, a
feasible solution for every feasibile instance of problem P(G,a, b) can be con-
structed in O(e) steps by the greedy algorithm. We shall improve upon both of these
results in Section 5.

Interestingly, even by severely limiting the range of supply and demand vectors
for which an optimality (or feasibility) sequence is required to give the right answer,
one cannot obtain a larger class of greedily solvable networks. This fact is stated
in the following theorem, whose proof is similar to that of Theorem 2.1(a) and is
omitted:

Proposition 3.2. Let (G, C) be a transportation network and let S be a permutation

of its admissible arcs. The following are equivalent:
(a) S is an optimality sequence.
(b) For every feasible (0,l) supply and demand vectors, GREEDY(S) gives an op-

timal solution.
(c) For every feasible (0,l) supply and demand vectors with only two coordinates

equal to one in each of them, GREEDY(S) gives an optimal solution.

One consequence of this proposition is for the perfect matching problem: The
bipartite matching problem (see, e.g., [3]) can be viewed as a transportation prob-
lem on a bipartite graph, where the supplies and demands are all ones. A perfect
matching exists if and only if that transportation problem is feasible. Let us call a
sequence S of the admissible arcs a perfect sequence for a bipartite graph G if for
every induced subgraph on which a perfect matching exists, GREEDY(S) gives a
perfect matching. Since assigning supply or demand zero to a vertex is equivalent
to removing it from the problem, the above observation implies the following.

Mange and feasibility sequences 27

Corollary 3.3. A bipartite graph G admits a perfect sequence if and only ifit admits
a feasibility sequence. Morever, S is a perfect sequence for G if and only if it is a
feasibility sequence for G.

4. Nonbipartite problems

In the transportation problems discussed above, the underlying graph is bipartite
and the vertices are prepartitioned into sources and destinations. An interesting
question is whether the notions of optimality and feasibility sequences could be ex-
tended to more general flow problems. We show below that indeed this can be done,
thereby extending the theory to general minimum cost flow problems. We assume
throughout that the problems are uncapacitated.

We first remove the restriction that the graph is bipartite, but assume that the
sources and destinations are specified: For a directed graph G = (V, E) with arc costs
C, let V= Y+ U V/- U p be a partition of the vertices. We also write G, and V, to
emphasize the underlying partition rt. V” and V- are the sources and destinations
in V, respectively. Given a pair of nonnegative supply and demand vectors a=
(a,,ie V’) and b= (bj,jE V-), with Cj, V + ai= C jc v- bj, a minimum cost flow
problem is determined, as follows:

min (, zEE cijxij9
1,

ai, ie V+,

s.t. c xij- C xki = 0, ie V”,
{il (i,.OEEJ {kl W,i)EEJ

(P,(C, a, b))
-bi, iEV_,

Xjj’ 0, (i, j)EE.

Transitive closures will play a central role in the sequel. The transitive closure of
the directed graph G is the grap G’ = (V, E’) satisfying (i, j) E E’ if and only if there
is a path from i to j in G. We say that an ordered pair (i, j) is connected if
(i, j) E E’. For a connected pair (i, j), we denote by Ch the cost of the cheapest path
from i to j in G, with respect to costs C. (We adopt the convention that (i, i) is not
connected.) If (i, j) is not connected then we set Ci= 00.

The greedy algorithm for the problem P,(C, a, b) repeatedly picks a connected
pair (i, j) where iE V+ and j E V-, and sends a maximum amount of flow along
the cheapest path from i to j. (Note the change in the algorithm, compared to
transportation problems: Rather than maximizing flow on a single arc in each step,
here the flow along a complete path is maximized. Note also that for transportation
problems one gets the original algorithm.) An optima& sequence for the pair
(G,, C) is a permutation S of the ordered connected pairs in {(i, j) 1 iE V+, jE V-}
such that for every feasible supply and demand vectors, the greedy algorithm which
uses the order S attains an optimal solution. A feasibility sequence for G, is
defined analogously.

28 I. Adler et al.

Given G, and C, define a related bipartite graph G’= G;=(V/+, I/-, E’) by

E’=(V+ x V)~IE’. The costs C’ in G’ are the cheapest path costs in G, as

defined above. Clearly P(C’, a, 6) is a transportation problem, and it is easy to

observe that one can solve it to obtain an optimal solution for the original problem.

This observation allows us to reduce the nonbipartite case to the bipartite case and

apply to it the results for optimality and feasibility sequences for transportation.

Hence we can conclude:

Proposition 4.1. Given a directed graph G, (not necessarily bipartite) with arc costs
C and specified sets of sources and destinations, S is an optimality sequence for
(G,,C) if and only if it is a Monge sequence for (CL, C’). Moreover, S is a
feasibility sequence for G, if and only if it is a Monge sequence for C”.

In the following corollaries, denote N=IVl, e=lEl, n=/V+l, m=ll/-1 and

P= IE'I . Again, without loss of generality we assume n 5 m. We denote by SP(k, I)

the complexity of solving a single-source shortest path problem on a graph with k
vertices and I arcs.

Corollary 4.2. Under the conditions of Proposition 4.1, the optimality sequence
problem for (G,, C) is solvable in O(n . SP(N e) + & log m) steps.

Proof. Constructing the graph G’ can be done by finding n shortest path trees, one

from each of the sources in G. A Monge sequence in (G’, C’) can subsequently be

found in O(& log m) steps [28]. 0

For example, by using the algorithm of [13], SP(N, e) = O(e + N log N), which

gives an overall complexity of O(en + nNlog N+ 6% log m) steps. (When n = Q(m)
and G’ is very dense, one can improve slightly upon the complexity in the above cor-

ollary by using Fredman’s all-pairs shortest path algorithm [12] for the preproces-

sing step.) In particular, when n + m = N and G is not very sparse (e = Q(N log N)),

this gives O(en + .Fn log m) steps. Not surprisingly, the transformation of the graph

may be the most costly operation, for dense networks with relatively few supply and

demand vertices. However, unless e = o(@) this algorithm is still faster than the

best known strongly polynomial algorithm for solving a single uncapacitated mini-

mum cost flow problem, with fixed supply and demand vectors, which takes

O(N log N(e + N log N)) steps [24].

Corollary 4.3. Under the conditions of Proposition 4.1, the feasibility sequence
problem for G, is solvable in O(ne + 6% log m) steps.

Proof. The proof follows from Theorem 3.1, Proposition 4.1 and Corollary 4.2.

The slight improvement in complexity is in the preliminary step: Computing the con-

Mange and feasibility sequences 29

nectivity from each vertex in V+ can be done in O(e) steps by depth-first search,

for a total of O(ne) steps of computing C’. cl

We now consider the more general case, in which there is no fixed partition into

sources and destinations. In this case, a directed graph G = (V, E) with arc costs C

is given. A supply function d is an assignment of values to the vertices d,,, o E V,
where d, is the supply (demand) at vertex u if d,> 0 (d, < 0). This determines a

minimum cost flow problem P(C, d). A formulation of the problem is the following:

s.t. c xij- c Xki=diy ie V,
{jl @,.i)EEJ {kI(k,i)~E}

(P(C, d))

xjj>o, (i, j) E E.

The greedy algorithm for problem P(C, d) repeatedly picks a connected pair (i, j),
and checks if i is a source and j is a destination. In case both answers are positive,

the algorithm sends a maximum amount of flow along the cheapest path from i to

j. For a permutation S of the pairs {(i, j) 1 (i, j) E E’}, denote by GREEDY(S) that

algorithm which picks the pairs according to their order in S. S is called an opti-
mality super-sequence for this problem if for every supply function d for which

P(G, d) is feasible, GREEDY(S) terminates with an optimal solution. (We call S a

supersequence to distinguish it from the previous cases, and to emphasize that for

every supply function only a fraction of the pairs in S is relevant for the greedy

algorithm.) A feasibility supersequence is defined analogously.

Recall that C’ is the matrix of shortest path costs in G. Define S to be a Mange

supersequence for (G,C) if it satisfies the following condition:

For every 4-tuple i, j, k, I of distinct vertices, if each of the pairs (i, j),
(i, I) and (k, j) is connected and (i, j) precedes (i, l) and (k, j) in S, then

(k, f) is also connected and Cij + CL/I Ci; + C&e

Note the requirement that all four vertices be distinct. This requirement was not

necessary in previous versions of the Monge conditions [19,28], since the two sets

of vertices corresponding to the rows and the columns were by definition disjoint.

(In fact, since a supersequence S cannot contain pairs (i, i) we could omit the explicit

requirement of distinctness.)

Proposition 4.4. S is an optimality supersequence for (G, C) if and only if it is a
Monge supersequence for (G, C).

Proof. Every supply function d induces a partition rc of V into V, = V+ U V- U

Ve, and a fixed partition problem (G,, C). Let s^ be the subsequence of S induced

by this partition, i.e.,

s^=Sfl {(i, j) 1 ie Vi, je VP, (i, j)EEt).

30 I. Adler et al.

If S is a Monge supersequence for (G, C), then by definition 9 is a Monge sequence
for (GA, C’), hence by [19,28], it is an optimality sequence for problem (G;, C’). In
particular, if S is a Monge supersequence then for every feasible supply function,
GREEDY(S) terminates with an optimal solution. The proof of the converse is
similar to that of the corresponding claims in [19,27]. 0

Corollary 4.5. S is a feasibility supersequence for G if and only if it is a Monge
supersequence for (G, C) .

Corollary 4.6. Let G(I/, E) be a directed graph with arc costs C where N= 1 V 1,
e = 1 E 1, and e’ = 1 E’ / . The optimality supersequence problem for (G, C) is solvable
in O(e’N log N) steps. In particular, the feasibility supersequence problem is solvable
in the same complexity.

Proof. The proof is similar to that of Corollaries 4.2 and 4.3. Here one needs to
find a Monge sequence for (G’, C’), where G’= (V, V, E’) satisfies (i, j) E E’ if and
only if i#j and (i,j) EE’, and C; is the cost of the shortest path from i toj in G.
Computing (G’, C’) requires calculation of all pairs shortest path distances, which
can be done, for example, in O(Ne) steps by Floyd’s algorithm (see, e.g., [26]). The
bottleneck in the complexity is finding a Monge supersequence in (G’, C’), which can
be done in O(e’N log N) by a minor adaptation of the algorithm in [27], to take care
of the special pairs (i, i). 0

For the transportation problem, Alon et al. observed that every 2 x n problem ad-
mits a Monge sequence [5]. This property is obviously true also for feasibility se-
quences, and is carried over to the corresponding problems on a nonbipartite graph
G,. When looking for supersequences, where there is no fixed partition anymore,
we can recognize two special cases in which a sequence always exists: If G’ is a tree
then there is always an optimality supersequence, since an arc which is incident on
a leaf can always be placed next in a sequence without violating the Monge condi-
tion. The other case will be discussed in the next section.

5. Graph theoretic connections

We now give several graph theoretic characterizations of graphs which admit
feasibility sequences. Using these characterizations, we will be able to improve upon
the complexity of some of the algorithms presented in Sections 3 and 4. First, we
need some definitions: A (0,l) matrix is called totally balanced if it contains no k x k
submatrix with kz 3, which has exactly two ones in each row and each column and
has no identical rows [20]. A matrix is called I-free if it does not contain r= (f A)
as a submatrix. The following characterization of totally balanced matrices was
introduced independently by Lubiw and Farber and used by Hoffman et al.:

Mange and feasibility sequences 31

Theorem 5.1 [lo, 20,221. A matrix is totally balanced if and only ifits rows and col-

urnns can be permuted in such a way that the resulting matrix is r-free.

Let us now return to bipartite graphs. For a bipartite graph G= (V,, V&E) with

1 VI (= n, j V2 1 =m, let M=M(G) be its n x m vertex-vertex adjacency matrix, i.e.,

Mij = 1 or 0 if (i, j) E E or (i, j) E F, respectively. It follows from the definition that

for a bipartite graph G, M(G) is totally balanced if and only if G does not contain

an induced chordless cycle of length six or more. (Namely, there is no set of vertices

Y= (01, vk} where kr6 such that the subgraph of G induced by Y contains ex-

actly the arcs (vi, oZ), (v2, us), . . . , (uk, v,).) A bipartite graph satisfying that property

is also called chordal bipartite [16].

To keep the notation consistent with that of Section 3, let us say that the (03,l)

skeleton matrix and the (0,l) adjacency matrix correspond if they are induced by

the same bipartite graph G. This simply means that all 00 entries in the former are

replaced by zeroes in the latter, and vice versa.

Theorem 5.2. The adjacency matrix of a bipartite graph is totally balanced if and
only if the corresponding skeleton matrix admits a Mange sequence.

Proof. Denote the adjacency and skeleton matrices by A4 and f?‘, respectively.

Assume first that M is totally balanced. By Theorem 5.1, A4 can be permuted into

a r-free form. Assume that Mis already in that form. Let S be the permutation ob-

tained from the natural ordering of the arcs (1, l), (1,2), . . . , (1, m), (2, l), . . . , (n, m) by

omitting all inadmissible arcs. S will be called a lexicographicpermutation in the se-

quel. Let arcs (i, j), (i, s) and (I; j) be admissible and assume that (i, j) precedes (r, j)
and (i,s) in S. By the lexicographic ordering, this implies that i<r and j<s. But

since M is r-free, (r,s) must also be admissible. Hence S is a Monge sequence for

C, and a feasibility sequence for G.

For the converse, assume that M is not totally balanced. Then A4 contains a k x k
submatrix (kr3) corresponding to a cycle. It is easy to verify that no element in the

corresponding submatrix of C can appear first among the elements of the submatrix

in a Monge sequence, hence C does not admit a Monge sequence. 0

In [27], a simple example was given of a problem which does not admit a Monge

sequence. (The cost matrix was 3 x 3 with the diagonal entries 03 and all the other

entries finite.) The above proof implies that only problems of that type (or those

which contain subproblems of that type) do not admit a feasibility sequence. More

precisely:

Corollary 5.3. A bipartite graph admits a feasibility sequence if and only if it is chor-

dal bipartite.

The proof of Theorem 5.2 implies also that every bipartite graph which admits

a feasibility sequence has one of a particular simple type:

32 I. Adler et al.

Corollary 5.4. If a bipartite graph admits a feasibility sequence, then one can per-
mute its vertices to obtain a lexicographic feasibility sequence.

In other words, whenever a feasibility sequence exists, there is one which can be

represented by row and column permutations. These row and column permutations

are exactly those which put Minto r-free form. Moreover, with respect to that order

of rows and columns, every other permutation with the property that (i, j) succeeds

(i, j - 1) and (i - 1, j) in S whenever these arcs are admissible is also a feasibility se-

quence.

If the matrix is in r-free form, then the greedy algorithm, using the lexicographic

sequence, scans the matrix from left to right and from top to bottom. In this case,

it is possible to avoid scanning entries whose row or column has already been

eliminated, and to perform the algorithm in time proportional to the number of

variables whose value is positive in the resulting solution. That number is at most

m + n - 1. Hence we can improve upon the results of Section 3 as follows:

Corollary 5.5. In a bipartite graph G which admits a feasibility sequence, one can
find a feasibility sequence which provides a feasible solution or determines in-
feasibility for every problem P(G, a, b) in O(m + n) steps.

Note that O(m + n) is optimum for constructing a solution, since a solution con-

sists of m + n - 1 positive numbers in nondegenerate problems.

Note also that from Corollaries 3.3 and 5.3 we get that for the matching problem,

a graph admits a perfect sequence if and only if it is chordal bipartite.

An efficient method to determine if a matrix is totally balanced, and to find its

r-free form in case it is, is the following: A matrix is totally balanced if and only

if the matrix obtained by reverse doubly lexical ordering of it is r-free [20]. So, one

can first find a reverse doubly lexical ordering of the matrix, and then check if it

is r-free. Finding doubly lexical ordering can be done in O(L log L), where

L = m + n + e, by an algorithm due to Paige and Tarjan [25]. For dense matrices, a

recent algorithm of Spinrad reduces the complexity to O(mn) [29]. Given the order-

ing, checking whether the matrix if r-free can be done in O(L) time [23]. Using these

results we can improve upon the results of Section 3 and Corollary 4.3 as follows:

Corollary 5.6. The feasibility sequenceproblem can be solved in O(min(e log e, mn))
steps for bipartite graphs, and in O(ne) steps for a nonbipartite graph with fixed
source-destination sets.

Determining if a restricted transportation problem with given supplies and

demands is feasible is equivalent to solving a maximum flow problem. The best

known general algorithms for the maximum flow problem require O(em) steps or

more (see, e.g., [3]). The complexities of our algorithms above are lower. Hence in-
stead of solving a feasibility problem by maximum flow algorithms, one can first

Mange and feasibility sequences 33

use the faster algorithms above to look for a feasibility sequence, and in case one

is found, the greedy algorithm subsequently resolves the feasibility question in linear

time. If no sequence is found, one can still use the maximum flow algorithm without

loss in the overall complexity.

We now turn to the general case, where there is no fixed partition into sources

and destinations. We first prove a lemma which will help simplify the detection of

feasibility supersequences. Recall that vertices i and j are called strongly connected

in G if each one is reachable from the other, i.e., both (i, j) E Et and (j, i) E Et.

Lemma 5.1. Let i and j be strongly connected in G, and let G’ be the graph obtained
from G by contracting i and j into v. G admits a feasibility super-sequence if and
only if G’ does.

Proof. If G’ does not admit a feasibility supersequence then clearly G does not ad-

mit one.

Assume that G’ admits a feasibility supersequence S’. Construct a sequence S as

follows:

Algorithm EXPAND(S’, O, i,j);

begin

For every k # LJ do

begin

Replace (v, k) in S’ by (i, k), (j, k); Replace (k, v) in S’ by (k, i),

(k, j);
end

Set S’ + ((i, j), (j, i), S’);
end

We claim that the resulting sequence S is a feasibility supersequence for G. To

simplify the argument, let us first introduce the following definition: If each of the

pairs (k, l), (k, r), (s, 1) is connected and (s, r) is not, let us call that 4-tuple of arcs

a blocker in S if (k, I) precedes (k, r) and (s, I) in S. We also call the pairs k, s and

I,r the two sides of the blocker. By the definition of a Monge supersequence and

Corollary 4.5, S is a feasibility supersequence if and only if it does not contain a

blocker.

Suppose S is not a feasibility supersequence. Then there is a blocker in S. It must

contain both i and j or else the corresponding 4-tuple in S’ would be a blocker in

S’. Vertices i and j cannot be on the same side of a blocker, since they have the same

set of (in- and out-) neighbors. Hence they must be on opposite sides of a blocking

4-tuple. Out of the four arcs in any such blocker, either (i, j) or (j, i) appears first

in S, by the construction of EXPAND. Since i and j are strongly connected, if (i, I),
(k, j) are connected then the pair (k,l) is connected too, by transitivity, so (i, j),
(j,i) are not contained in any blocker of S. Hence S does not contain a blocker,

so it is a feasibility supersequence. 0

34 I. Adler et al.

The condensation of a directed graph G is the directed graph obtained from G

by contracting each strongly connected component into a single vertex. Using Lem-

ma 5.7 repeatedly we get:

Corollary 5.8. A graph admits a feasibility supersequence if and only if its condensa-
tion does.

Note that the condensation is always acyclic. In particular, Corollary 5.8 and the

discussion in Section 4 imply that it is sufficient to be able to find feasibility super-

sequences in acyclic graphs which are closed under transitivity. (A graph is closed

under transitivity if it is identical to its transitive closure.) We use this fact in the

following theorem:

Theorem 5.9. Let G be a directed acyclic graph which is closed under transitivity,
and let M(G) be its adjacency matrix. G admits a feasibility supersequence if and
only if M(G) is totally balanced.

Recall that the adjacency matrix of the directed graph S satisfies M;j = 1 if and

only if (i, j) E E and 0 otherwise. In particular, Mii = 0 for all i.

Proof. Sufficiency follows in the same way as in Theorem 5.2: If A4 is totally

balanced then by Theorem 5.1 it has a r-free form. With respect to that form, the

lexicographic sequence is a feasibility supersequence.

Let us now prove necessity: If Mis not totally balanced then it contains a submatrix

corresponding to a chordless cycle of 2k vertices, C= (iO, j,, il, j,, . . . , ik_ 1, j,_ 1, iO)
for some kz3. It suffices to show that these vertices must be distinct in order to

imply that G does not admit a feasibility sequence. Assume conversely that C con-

tains two identical vertices, r and s. If r and s have the same parity in the cycle, say

r=i, and s=i,, then either (s, j,_ r) or (s, j,+ r) is a chord (here and throughout, all

indices are mod k). If r and s have opposite parity, say r= il and s= j,, then since

in the adjacency matrix Mii = 0 for all i, r and s cannot be adjacent in the cycle.

Since (i,,s) E E, (r, j,) E E and (r, j,_ ,) E E, and r = s, by transitivity both (i,, j,_ 1>
and (i,, j,) must be present in E, and at least one of them is a chord. Hence all ver-

tices in C must be distinct. In such a cycle C, no vertex can appear first in a feasi-

bility supersequence. 0

Interestingly, from the above theorem using the terminology of partially ordered

sets, we get that G admits a feasibility supersequence if and only if the partially

ordered set corresponding to G does not contain a crown of order ~3 (see, e.g.,

[ll]). This interpretation immediately gives another set of graphs on which the exis-

tence of a feasibility supersequence is guaranteed: Recall that in a directed acyclic

graph two vertices are comparable if there is a path from one of them to the other,

and an antichain is a set of vertices no two of which are comparable.

Monge and feasibility sequences 35

Corollary 5.10. Let G be a directed acyclic graph closed under transitivity. If the
maximum antichain in G is of size at most two then G admits a feasibility super-
sequence.

Using Corollary 5.8 and Theorem 5.9, we can recognize if a graph admits a

feasibility supersequence by the following algorithm:

Algorithm FEASIBILITY-SUPERSEQUENCE(

begin
Step 1. Contract strong components of G. Call the resulting graph

cond(G).

Step 2. Compute D, the transitive closure of cond(G).

Step 3. Compute a reverse doubly lexical ordering of M(D), the ad-

jacency matrix of D. Call the reordered matrix M*.

Step 4. Check whether M* is r-free. If not, stop, G does not admit a

feasibility supersequence. If it is, the lexicographic order in M*

induces a feasibility supersequence S’ in D. For each pair i, j
which was contracted into u, EXPAND(S’, u, i, j).

end

Denote by fi and @ the number of vertices and arcs, respectively, in cond(G), and

by P the number of arcs in D above. For a graph with k vertices and I arcs, denote

by TC(k, f) the complexity of computing its transitive closure, and by GF(k, 1) the

complexity of finding a r-free permutation of its adjacency matrix, or determining

that none exists.

Theorem 5.11. The above algorithm constructs a feasibility supersequence or deter-
mines that no such sequence exists in O(e + TC(A, $) + GF(ii, e)) steps.

Proof. Validity follows from Corollary 5.8 and Theorem 5.9. The strong com-

ponents can be computed in Step 1 in O(e) [30]. Step 2 requires calculating the

transitive closure of cond(G), and Steps 3-4 find the r-free form. 0

As in Corollary 5.6, Steps 3 and 4 require O(min(Z2, P log fi)) and O(e)), respec-

tively. Hence, in particular, using Warshall’s algorithm for the transitive closure

(see, e.g., [26]) gives an overall complexity of O(e + ii@). Note that formally Step 1

is not necessary for the validity of the algorithm. (If we do not perform it, we shall

have identical rows and columns in M(D) for vertices in the same strongly connected

component.) However, this step may considerably reduce the size of the graph on

which Steps 2-4 are performed, and is faster to perform than Step 2. Hence, in prac-

tice contracting strong components first may improve the running time when these

components form a large part of the graph.

36 I. Adler et al.

6. Concluding remarks

We have shown how the theory of optimality sequences can be extended from the
bipartite case to general minimum cost flow problems. We have also described a
parallel theory of feasibility sequences, gave necessary and sufficient conditions for
the existence of such sequence, and provided efficient algorithms for constructing
optimality and feasibility sequences in general networks. The complexities of these
algorithms are comparable to those of the fastest known general algorithms for
solving a single feasibility or optimality question for a specific supply and demand
function. The complexity results are summarized in Table 1.

We have also shown that the concept of a graph admitting a feasibility sequence
is closely related to the concepts of totally balanced matrices and chordal bipartite
graphs. Since these concepts have been shown in the past to be very useful for study-
ing integral polyhedra and perfect Gaussian elimination, it may be interesting to in-
vestigate these relations further. A deeper understanding of the relations between
optimality sequences and totally monotone matrices is also of interest.

If the algorithm of [27] is used to find a Monge sequence (either for the optimality
or for the feasibility question), it may terminate with a negative answer after having
produced a partial sequence. As already noted by [.5,27], this partial sequence can
still be used by the greedy algorithm until exhausted, thereby reducing the problem
size considerably. Subsequently, general flow algorithms may be applied on the
reduced problem. Since the use of each element in the partial sequence may remove
one or two vertices from the problem, a partial sequence may also be useful in
practice.

Finally, let us mention several open questions that arise from our study:
(1) Extend the theory of optimality and feasibility sequences to capacitated flow

problems.
(2) Given a minimum cost problem which does not admit a feasibility or an op-

timality sequence, find how to modify the costs “in a minimal way” so that the
modified problem will admit such a sequence.

(3) Given a sequence S which is not lexicographic, is there an efficient way to
preprocess it in such a way that for every supply function, GREEDY(S) will take
O(m + n) steps?

Table 1

Complexity of the optimality and feasibility sequence algorithms in various networks

(Notation: n sources, m destinations, n 5 m; Nvertices, e arcs; C arcs in the corresponding bipartite graph

for the fixed partition case; e’ arcs in the transitive closure; fi vertices and @ arcs in the condensation;

e arcs in the transitive closure of the condensation. SP(k, !) = complexity of the single source shortest path

problem in a graph with k vertices, I arcs.)

Bipartite Fixed partition General

Optimality

Feasibility

O(en log WI) [27]

O(min(e log e, mn))

O(n SP(N, e) + f?n log m)

O&n)

O(e’Nlog N)

O(e + rig)

Mange and feasibility sequences 37

References

111

121

131

141

151

I61

I71

181

191

I101

[Ill

I121

1131

1141

I151

1161

1171

1181

1191

I201

1211

I221

I231

I241

A. Aggarwal, M.M. Klawe, S. Moran, P. Shor and R. Wilber, Geometric applications of a matrix-

search algorithm, Algorithmica 2 (1987) 195-208.

A. Aggarwal, D. Kravets, J.K. Park and S. Sen, Parallel searching in generalized Monge arrays with

applications, in: Proceedings 2nd Annual Symposium on Parallel Algorithms and Architectures, to

appear.

R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network flows, in: G.L. Nemhauser, A.H.G. Rinnooy

Kan and M.S. Todd, eds., Handbooks in Operations Research and Management Science Vol. I

(Elsevier, Amsterdam, 1989) 21 l-369.

S. Albers and P. Brucker, Thecomplexityof one-machine batching problems, Tech. Rep., Osnabriick

University (1990).

N. Alon, S. Cosares, D. Hochbaum and R. Shamir, An algorithm for the detection and construc-

tion of Monge sequences, Linear Algebra Appl. 114/l 15 (1989) 669-680.

E.R. Barnes and A.J. Hoffman, On transportation problems with upper bounds on leading rec-

tangles, SIAM J. Algebraic Discrete Methods 6 (1985) 487-496.

R. Chandrasekaran, Recognition of Gilmore-Gomory traveling salesman problem, Discrete Appl.

Math. 14 (1986) 231-238.

B.L. Dietrich, Monge sequences, antimatroids, and the transportation problem with forbidden arcs,

Linear Algebra Appl. 139 (1990) 133-145.

D. Eppstein, Z. Galil and R. Giancarlo, Speeding up dynamic programming, in: Proceedings 29th

IEEE Symposium on Foundations of Computer Science (1988) 488-496.

M. Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (1983) 173-189.

P.C. Fishburn, Interval Orders and Interval Graphs (Wiley, New York, 1985).

M.L. Fredman, New bounds on the complexity of the shortest path problem, SIAM J. Comput.

5 (1976) 83-89.

M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved network optimization

algorithms, J. ACM 34 (1987) 596-615.

P.C. Gilmore and R.E. Gomory, Sequencing a one-state variable machine: A solvable case of the

traveling salesman problem, Oper. Res. 11 (1964) 655-679.

P.C. Gilmore, E.L. Lawler and D.B. Shmoys, Well-solved special cases, in: E.L. Lawler, J.K.

Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys, eds., The Traveling Salesman Problem (Wiley,

Chichester, 1985) 87-144.

M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, New York,

1980).

G. Hadley, Linear Programming (Addison-Wesley, Reading, MA, 1962).

D.S. Hochbaum and R. Shamir, Minimizing the number of tardy job units under release time con-

straints, Discrete Appl. Math. 28 (1990) 45-57.

A.J. Hoffman, On simple linear programming problems, in: V. Klee, ed., Convexity: Proceedings

of Symposia in Pure Mathematics Vol. 7 (American Mathematical Society, Providence, RI, 1963).

A.J. Hoffman, A.W. Kolen and M. Sakarovitch, Totally balanced and greedy matrices, SIAM J.

Algebraic Discrete Methods 6 (1985) 721-730.

B. Lev, A noniterative algorithm for tridiagonal transportation problems and its generalization,

Gper. Res. 20 (1972) 109-125.

A. Lubiw, r-free matrices, Master’s thesis, Department of Combinatorics and Optimization,

University of Waterloo, Waterloo, Ont. (1982).

A. Lubiw, Doubly lexical ordering of matrices, SIAM J. Comput. 16 (1987) 854-879.

J.B. Grlin, A faster strongly polynomial minimum cost flow algorithm, in: Proceedings 20th ACM

Symposium on Theory of Computing (1988) 377-387; revised version: Sloan W.P. No. 3060.89-MS,

Sloan School of Management, M.I.T. (1989); also: Oper. Res., to appear.

38 I. Adler et al.

[25] R Paige and R.E. Tarjan, Three partition refinement algorithms, SIAM J. Comput. 16 (1987)

973-989.

[26] R. Sedgewick, Algorithms (Addison-Wesley, Reading, MA, 1988).

[27] R. Shamir, A fast algorithm for constructing Monge sequences in transportation problems with for-

bidden arcs, Rept. 136/89, Tel Aviv University, Tel Aviv (1989); also: Discrete Math., to appear.

[28] R. Shamir and B. Dietrich, Characterization and algorithms for greedily solvable transportation

problems, in: Proceedings of the First ACM/SIAM Symposium on Discrete Algorithms (SIAM,

Philadelphia, PA, 1990) 358-366.

(291 J.P. Spinrad, Doubly lexical ordering of dense O-l matrices, Rept., Computer Science Department,

Vanderbilt University, Nashville, TN (1990); also: Inform. Process. Lett., to appear.

[30] R.E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (1972) 146-160.

