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Abstract In 1951, Dantzig showed the equivalence of linear programming prob-
lems and two-person zero-sum games. However, in the description of his reduction
from linear programs to zero-sum games, he noted that there was one case in which
the reduction does not work. This also led to incomplete proofs of the relationship
between the Minimax Theorem of game theory and the Strong Duality Theorem of
linear programming. In this note, we fill these gaps.

Keywords Linear programming · Zero-sum games ·Minimax theorem ·
Strong duality · Farkas’ lemma · Villes’ theorem

1 Introduction

This note concerns the equivalence between linear programming (LP) problems and
zero-sum games. As presented in texts discussing the relationship between two-person
zero-sum games and LP (e.g. Luce and Raiffa (1957); Raghavan (1994)), LP problems
and zero-sum games are claimed to be equivalent in the sense that one can convert any
two-person zero-sum game to an LP problem and vice-versa. The reduction of any
zero-sum game to an LP problem is well known to be simple and direct. In addition,
this reduction can be applied to prove the Minimax Theorem as a direct corollary of
the Strong Duality Theorem of LP. The reduction of an LP problem (and its dual) to
a zero-sum game is somewhat more involved. Consider the LP problem:

min cᵀx

s.t Ax ≥ b, x ≥ 0 (1)
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and its dual:

max bᵀy

s.t Aᵀy ≤ c, y ≥ 0 (2)

where A ∈ Rm×d , b, y ∈ Rm, c, x ∈ Rd .

A zero-sum game whose payoff matrix P ∈ Rn×n is skew symmetric (i.e. Pᵀ =
−P) is called a symmetric game. A solution for such a game is a vector z ∈ Rn

satisfying:

Pz ≥ 0, eᵀz = 1, z ≥ 0 (where e is a vector of 1’s). (3)

The Minimax Theorem, as first introduced in von Neumann (1928), and as applied to
a symmetric zero-sum game, states that:

Theorem 1 (Minimax Theorem—symmetric zero-sum game) Given a skew-symmet-
ric matrix P ∈ Rn×n, there exists a vector z ∈ Rn satisfying (3).

It is suggested in Dantzig (1951) to reduce the pair of LP problems (1–2) to a
symmetric zero-sum game with the following payoff matrix:

P =
⎛
⎝

0 A −b
−Aᵀ 0 c
bᵀ −cᵀ 0

⎞
⎠ (4)

We call such a game the Danzig game associated with problems (1–2). Applying
Theorem 1 to (4), a solution (ȳᵀ x̄ᵀ t̄)ᵀ to the corresponding Dantzig game satisfies:

⎛
⎝

0 A −b
−Aᵀ 0 c
bᵀ −cᵀ 0

⎞
⎠

⎛
⎝

ȳ
x̄
t̄

⎞
⎠ ≥

⎛
⎝

0
0
0

⎞
⎠,

⎛
⎝

ȳ
x̄
t̄

⎞
⎠ ≥

⎛
⎝

0
0
0

⎞
⎠, eᵀ ȳ + eᵀx̄ + t̄ = 1. (5)

It is shown in Dantzig (1951) that:

Theorem 2 (a) t̄(bᵀ ȳ − cᵀx̄) = 0.
(b) If t̄ > 0, then x̄ t̄−1, ȳt̄−1 are optimal solutions to the primal–dual LP problems

pair (1–2), respectively.
(c) If bᵀ ȳ − cᵀx̄ > 0, then either problem (1) or problem (2) (possibly both) are

infeasible (so neither has an optimal solution).

However, this reduction of an LP problem to a zero-sum game is incomplete. Spe-
cifically, it is possible to have a solution (ȳᵀ x̄ᵀ t̄)ᵀ to (5) with t̄ = bᵀ ȳ − cᵀx̄ = 0
which, by itself, does not resolve the optimality, or lack of optimality, of the pair of
LP problems (1–2). Indeed, the first two references to the equivalence of LP problems
and zero-sum games, Dantzig (1951) and Gale et al. (1951), explicitly point out this
discrepancy. Again, in his LP tome Dantzig (1963), Dantzig states that “[t]he reduction
of a linear program to a game depends on finding a solution of a game with t > 0.
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If t = 0 in a solution, it does not necessarily mean that an optimal feasible solution to
the linear program does not exist.” In addition, the typical proof of the Strong Duality
Theorem of LP via the Minimax Theorem (e.g. Raghavan (1994)) uses Theorem 2
together with a version of the well known Farkas’ Lemma (see e.g. Dantzig (1963))
which is used to show that there always exists a solution (ȳᵀ x̄ᵀ t̄)ᵀ to (5) where
either t̄ > 0 or bᵀ ȳ − cᵀx̄ > 0, and as a consequence of this, one can easily obtain
the Strong Duality Theorem. The problem with this approach is that it is well known
that the Strong Duality Theorem can be derived directly as a special case of Farkas’
Lemma. So in a sense, this approach amounts to a tautology. Over the years, the equiv-
alence of LP problems and zero-sum games seemed to be accepted as folk theory. The
goal of this note is to plug this “hole” and to provide a complete treatment of the
equivalence between LP problems and zero-sum games.

2 Problem setup, and summary of the results

To simplify the presentation, we replace the LP problem with a feasibility problem in
the so-called Standard Form. Specifically, given A ∈ Rm×n, b ∈ Rm , let

X (A, b) = {x | Ax = b, x ≥ 0}.

We define the Linear feasibility (LF) problem as:

F(A, b) : Either find x ∈ X (A, b), or show that X (A, b) = ∅.

We assume, without loss of generality, that A. j �= 0 for j = 1, . . . , n, and that
rank(A) = m.

Let Y (A, b) = {y | yᵀA ≤ 0, yᵀb > 0}. The following lemma, which is the
LF problem’s analogue of the Weak Duality Theorem of LP, provides a sufficient
condition for the infeasibility of Ax = b, x ≥ 0.

Lemma 3 If Y (A, b) �= ∅, then X (A, b) = ∅.
Proof Suppose x̄ ∈ X (A, b) and ȳ ∈ Y (A, b), then

0 ≥ (ȳᵀA)x̄ = ȳᵀ(Ax̄) = ȳᵀb > 0.

a contradiction. ��
If (as in Dantzig (1951)—see Theorem 2) by solving an LP problem one means

finding an optimal solution if one exists, or else demonstrating that no optimal solu-
tion exists, there is no loss of generality in considering the LF problem instead of the
LP problem. This is because it is well known that one can present a pair of dual LP
problems (such as (1) and (2)) as an LF problem by combining the constraints of the
primal and the dual and adding the constraint bᵀy ≥ cᵀx .

In order to present F(A, b) as a symmetric game, we replace the equation Ax = b
with the equivalent two inequalities Ax ≥ b and (−eᵀA)x ≥ −eᵀb. To construct the
associated Dantzig game we consider the following LP problem:
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min u

s.t Ax + eu ≥ b

(−eᵀA)x + u ≥ −eᵀb

x ≥ 0, u ≥ 0

whose dual is

max bᵀy − (eᵀb)v

s.t Aᵀy − (Aᵀe)v ≤ 0

eᵀy + v ≤ 1

y ≥ 0, v ≥ 0.

Constructing the corresponding Dantzig game, we observe that its set of solutions
(see 1, 2, 3, and 4) is:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

y
v

x
u
t

⎞
⎟⎟⎟⎟⎠
≥

⎛
⎜⎜⎜⎜⎝

0
0
0
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0 0 A e −b
0 0 −eᵀA 1 eᵀb
−Aᵀ Aᵀe 0 0 0
−eᵀ −1 0 0 1
bᵀ −bᵀe 0 −1 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

y
v

x
u
t

⎞
⎟⎟⎟⎟⎠
≥

⎛
⎜⎜⎜⎜⎝

0
0
0
0
0

⎞
⎟⎟⎟⎟⎠

,

eᵀy + v + eᵀx + u + t = 1
}

where x ∈ Rn, y ∈ Rm, and u, v, t ∈ R.
We refer to a game with the payoff matrix above as the Dantzig game associated

with F(A, b). Expanding the system of inequalities above, we get:

Ax + eu ≥ bt, (6a)

(eᵀA)x − u ≤ (eᵀb)t, (6b)

Aᵀ(y − ev) ≤ 0, (6c)

eᵀy + v ≤ t, (6d)

bᵀ(y − ev) ≥ u, (6e)

x ≥ 0, u ≥ 0, y ≥ 0, v ≥ 0, t ≥ 0 (6f)

eᵀx + u + eᵀy + v + t = 1. (6g)

Thus, we can refer to the set of all the solutions of the Dantzig game associated
with F(A, b) as the set of all (x, u, y, v, t) satisfying (6a–6g). We denote this set by
G(A, b). In the next proposition we prove the analogue of Theorem 2 for LF problems
and specify a condition that must be satisfied whenever F(A, b) is not resolved by
solving its associated Dantzig game.

Proposition 4 Let (x̃, ũ, ỹ, ṽ, t̃) ∈ G(A, b).

(a) Suppose t̃ > 0,
(i) If ũ = 0, then x̃ t̃−1 ∈ X (A, b).
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(ii) If ũ > 0, then X (A, b) = ∅.
(b) If t̃ = 0, then 0 �= x̃ ∈ X (A, 0).

Proof (a) (i) Follows from (6a), (6b), and (6f).
(i i) Follows from (6c), (6e), and Lemma 3, as (ỹ − eṽ) ∈ Y (A, b).

(b) t̃ = 0 ⇒ (by (6d) and (6f)) ỹ = 0, ṽ = 0, ⇒ (by (6e) and (6f)) ũ = 0.

ỹ = 0, ũ = ṽ = t̃ = 0, ⇒ (by (6g)) x̃ �= 0. t̃ = ũ = 0 ⇒
(by (6a), (6b) and (6f)) Ax̃ = 0, x̃ ≥ 0.

��
Our main goal in this note is to show how to reduce F(A, b) to a zero-sum game.

Specifically, our goal is to show how one can solve any LF problem by way of solving
a zero-sum game. To have a meaningful reduction, we consider, as discussed in the
beginning of Sect. 3, only strongly polynomial reductions. In the rest of Sect. 3, we
present two strongly polynomial reductions of LF problems to zero-sum games. The
first is a Karp type reduction based on solving a single Dantzig game of a modified
LF problem. This reduction is shown to be strongly polynomial whenever A, b are
composed of algebraic numbers. The second reduction is a Cook type reduction, where
a solver for zero-sum games is used as an oracle which is called up to n times, starting
with the original LF problem and continues with progressively strictly smaller LF
problems. This reduction is strongly polynomial even when A, b are composed of real
numbers.

The analogue of the Strong Duality Theorem for the FL problem is the well-known
Farkas’ Lemma Farkas (1902). In fact, it is well established (see e.g Dantzig (1963))
that the Strong Duality Theorem is a direct corollary of Farkas’ Lemma which is
presented below.

Theorem 5 (Farkas’ Lemma) X (A, b) �= ∅ if and only if Y (A, b) = ∅.
In Sect. 4 we provide a proof of Farkas’ Lemma that is derived directly from the

Minimax Theorem. The proof is based on the observation that Ville’s Theorem Ville
(1938), a well-known homogenous variant of Farkas’ Lemma, is a direct corollary of
the Minimax Theorem. We use the following notation throughout this note. Given a
matrix A ∈ Rm×n , and subsets I ⊆ {1, . . . , m} and J ⊆ {1, . . . , n}, we denote by
AI J the submatrix of A whose rows and columns are indexed by I and J respectively.
When I = {1, . . . , m}, we replace AI J with A.J . We use e to denote a column vector
of 1’s.

3 Reduction of LF problems to zero-sum games

In this section we discuss reductions of LF problems to zero-sum games. Typically, in
complexity theory, meaningful reductions are required to be polynomial, that is, the
effort of the reduction, as well as the effort to recover the solution, is required to be
polynomial in the size of the problem. In addition, the size of the resultant reduction
should be bounded by a polynomial function of the size of the presentation of the
original problem. To make the reduction meaningful in the framework of complexity
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theory and given that any LF problem with rational data is known to be solved in
time polynomial in the size of the problem (measured as the number of bits needed to
encode the data), we consider only reductions where the effort (in terms of number of
basic arithmetic operations) is bounded above by a polynomial in m and n (the size
of the matrix of coefficients underlying the LF problem), and where the number of
rows and columns of the payoff matrix of the zero-sum game(s) used in the reduction
is (are) bounded above by a polynomial in m and n. In addition, when the reduction
is applied to rational input, the size of the numbers occurring during the reduction is
polynomially bounded in the dimension of the input and the size of the input numbers.
We call such reductions strongly polynomial.

In Subsect. 3.1 we present a Karp-type reduction in which F(A, b) is reduced in
time polynomial in m and n to a single Dantzig game whose payoff matrix is of size
(m + n + 4)× (m + n + 4), and whose solution can be trivially converted to resolve
F(A, b) as specified in Proposition 4. However, this reduction is critically dependent
on uniform bounding below the absolute values of the determinants of all m × m
nonsingular submatrices of the underlying matrix of coefficients, which can be easily
computed in strongly polynomial time for rational data. In fact, an analogue bound is
applicable when the data is algebraic. However, the question of whether, for matrices
whose data is real, one can find such a bound in strongly polynomial time is open. As
a consequence, we are able to show that this reduction is strongly polynomial only for
LF with algebraic data.

In Subsect. 3.2 we present a Cook-type reduction in which a zero-sum game solver
is used up to n times as an oracle, and where the size of the payoff matrix of each
game is at most (m + n + 3)× (m + n + 3) and where, for rational data, the size of
the matrix entries are bounded above by polynomial function of the problem’s size.
The reduction of F(A, b) to the initial game and the conversion of the solution of the
final game to a solution for F(A, b) can be trivially carried out in time polynomial
in m and n. The rest of the effort of the reduction is also strongly polynomial. This
reduction is applicable even when the data is composed of real numbers.

3.1 Karp-type reduction

Recall that it is shown in Proposition 4 that if the solution of the Dantzig game asso-
ciated with F(A, b) does not provide a resolution to F(A, b), then we obtain 0 �=
x̃ ∈ X (A, 0). Noting that this case occurs if and only if the set X (A, b) is unbounded
(whenever it is nonempty), we add the constraint eᵀx ≤ β (where β > 0) which
bounds the set X (A, b) ∩ {x | eᵀx ≤ β} whenever it is nonempty. To express this
problem in standard form, we define

Â =
(

A 0
eᵀ 1

)
, b̂(β) =

(
b
β

)
.

Now, we replace X (A, b) with X ( Â, b̂(β)) where β is a positive scalar.1 In the fol-
lowing two propositions, we show that the Dantzig game associated with F( Â, b̂(β))

1 Note that X ( Â, b̂(β)) has an additional variable, xn+1, corresponding to the last column of Â.
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always resolves it, and that for sufficiently large β, F( Â, b̂(β)) can be solved in lieu
of F(A, b).

Proposition 6 Let β > 0. If (x̃, ũ, ỹ, ṽ, t̃) ∈ G( Â, b̂(β)), then t̃ > 0.

Proof Since X ( Â, b̂(β)) is bounded if nonempty, we have that X ( Â, 0) = {0}. Thus,
by Proposition 4, t̃ > 0. ��
Proposition 7 Let A ∈ Rm×n, b ∈ Rm, where A. j �= 0 for j = 1, . . . , n. Then, there
exists β(A, b) such that for all β ≥ β(A, b), X (A, b) �= ∅ if and only if X ( Â, b̂(β)) �=
∅.

The key to the proof of Proposition 7 is a well known theorem (Carathodory (1911))
that we present as Lemma 8. For a vector x , we denote:

J+(x) = { j | x j > 0}, J−(x) = { j | x j < 0}, J 0(x) = { j | x j = 0},
J±(x) = { j | x j �= 0}.

Lemma 8 (Caratheodory’s Theorem) Suppose X (A, b) �= ∅ where A. j �= 0 for
j = 1, . . . , n. Then, there exists x̄ ∈ X (A, b) such that the columns of A.J+(x̄) are
linearly independent.

Proof of Proposition 7 Suppose (x̄1 . . . x̄n+1)
ᵀ ∈ X ( Â, b̂(β)), then clearly (x̄1 . . .

x̄n)ᵀ ∈ X (A, b). Next, we prove that there exists β(A, b) such that for all β ≥
β(A, b), X (A, b) �= ∅ implies X ( Â, b̂(β)) �= ∅. Suppose X (A, b) �= ∅ and let

S(A, b) = {x | Ax = b, and the columns of A.J±(x) are linearly independent}.
(7)

By the assumption that rank(A) = m, we have |S(A, b)| ≥ 1. Suppose x̃ ∈ S(A, b).
Since the columns of A.J±(x̃) are linearly independent, x̃ J±(x̃) is the unique solution
of A.J±(x̃)xJ±(x̃) = b. Thus, |S(A, b)| ≤ 2n , establishing the existence of

β(A, b) = max
x∈S(A,b)

eᵀx + 1. (8)

Now, since X (A, b) �= ∅ and by Lemma 8, there exists x̄ ∈ X (A, b) ∩ S(A, b), so
eᵀx̄ ≤ β(A, b), which implies that (x̄ β − eᵀx̄)ᵀ ∈ X ( Â, b̂(β)) for all β ≥ β(A, b).
��

In view of Propositions 4, 6, and 7, it is apparent that any solution to the Dant-
zig game associated with F( Â, b̂(β)) with β ≥ β(A, b) as specified in (8), resolves
F(A, b). The key issue, though, is how to compute an upper bound to β(A, b) in
strongly polynomial time. Note that the members of S(A, b) correspond to the basic
solutions of Ax = b. By Cramer’s rule (and by the assumption that rank(A) = m),
we have that each component of a basic solution to Ax = b is a ratio D2

D1
of two

determinants, D1 which is the determinant of an m × m nonsingular submatrix of A,
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and D2 which is the same as D1 with b replacing one of its columns. Specifically, we
can set an upper bound β̂ for β(A, b), where

β̂ = m
δmax

δmin
+ 1

where

δmax = max {|det (D)| over all m × m submatrices D of (A b)} ,
δmin = min{|det (D)| over all m × m nonsingular submatrices D of A}.

A routinely used upper bound for δmax in the LP literature is (
√

mθ)m , where θ is
the largest absolute value of the entries in (A, b). In addition, when the data of the
problem is rational we can assume, without loss of generality, that all the entries of
(A, b) are integers which implies that δmin ≥ 1. Thus, for the case of integer data, one
can calculate in strongly polynomial time the following upper bound on β̂ (and hence
on β(A, b)):

β̂ ≤ m(
√

mθ)m + 1.

It is shown in Adler and Beling (1997) that if the entries of (A, b) are algebraic
numbers, a similar upper bound to β̂ can be calculated in strongly polynomial time.
However, if the data is real, it is not known whether it is possible to calculate in strongly
polynomial time a positive lower bound to δmin and hence, an upper bound to β̂ (for
a discussion on those bounds see e.g. Megiddo (1990)). Thus, the reduction in this
section is proved to be valid only for LP problems with algebraic data.

3.2 Cook-type reduction

In this subsection we show how to resolve F(A, b) by using a zero-sum game solver as
an oracle that is called at most n times. Given F(A, b), the reduction starts by solving
the Dantzig game associated with it. By Proposition 4, we either resolve F(A, b) or
obtain 0 �= x̃ ∈ X (A, 0). The basis for the reduction is the observation that in the
latter case, we can relax the nonnegativity of the variables indexed by J+(x̃). Given
J ⊆ {1, . . . , n}, we define

X (A, b, J ) = {x | Ax = b, xJ ≥ 0}.

Specifically, we show in Proposition 9 that X (A, b) can be replaced by X (A, b, J 0(x̃)).
This new problem allows us to substitute out the variables indexed by J+(x̃) from
the LF problem corresponding to X (A, b, J 0(x̃)), leading to a strictly smaller equiv-
alent problem. This process is repeated at most n times before we necessarily resolve
F(A, b). We also show that the reduction is strongly polynomial and that it is valid
when the data is real. We start the presentation of the reduction with the following
proposition:

123



Linear programs and zero-sum games

Proposition 9 Let 0 �= x̃ ∈ X (A, 0). Then, X (A, b) �= ∅ if and only if X (A, b, J 0

(x̃)) �= ∅.
Proof Clearly X (A, b) ⊆ X (A, b, J 0(x̃)). Suppose x̂ ∈ X (A, b, J 0(x̃)), and that
J−(x̂) �= ∅ (so x̂ /∈ X (A, b)). For α ∈ R, let x(α) = x̂ + α x̃ . Thus,

Ax(α) = A(x̂ + α x̃) = Ax̂ + αAx̃ = b + α0 = b.

Let ᾱ = max j∈J−(x̂)(− x̂ j
x̃ j

). Since x̃ J+(x̃) > 0 and J−(x̂) ⊆ J+(x̃), we have x(α) =
x̂ + α x̃ ≥ 0 for all α ≥ ᾱ. Thus, x(α) ∈ X (A, b) for all α ≥ ᾱ, so we conclude that
X (A, b, J 0(x̃)) �= ∅ implies X (A, b) �= ∅. ��

A standard technique for handling unrestricted variables in a system of linear equa-
tions is to create an equivalent system of equations in which the unrestricted variables
are substituted out of the system. Specifically, let 0 �= x̃ ∈ X (A, 0) and denote
J+ = J+(x̃), J 0 = J 0(x̃), and � = rank(A.J+) (note that � ≥ 1).

If J 0 = ∅, then F(A, b, J 0) corresponds to a system of linear equations with no
nonnegativity constraints. Hence, it can be resolved by Gaussian elimination.

If J 0 �= ∅, then one can compute (see e.g. Dantzig (1963)):

H ∈R(m−�)×|J 0|, F ∈Rm×m, D ∈R|J+|×|J 0|, h ∈R(m−�) and d ∈R|J+|, (9)

such that:

If x̄ ∈ X (A, b) then x̄ J 0 ∈ X (H, h), (10a)

if x̄ J 0 ∈ X (H, h) then, letting x̄ J+ = d − Dx̄J 0 , we have x̄ ∈ X (A, b, J 0),

(10b)

for a given u ∈ R(m−�), let yᵀ = (0 uᵀ)F, then yᵀA=(0 uᵀH), yᵀb=uᵀh.

(10c)

Now, we can construct a valid reduction of F(A, b) as follows:

(i) We start by solving the Dantzig’s game associated with F(A, b). By Proposition
4, if F(A, b) is not resolved by solving the game then we obtain 0 �= x̃ ∈ F(A, 0).

(ii) Set J+ = J+(x̃), J 0 = J 0(x̃), and compute H, D, F , h and d as in (9).
(iii) Solve the Dantzig’s game associated with F(H, h).
(iv) By Proposition 4 we get one of the following three cases:

(iv-a) We get x̄ J 0 ∈ X (H, h). Then, by (10b) and Proposition 9, we can construct
x̄ ∈ X (A, b) and we are done.

(iv-b) We get ū such that ūᵀH ≤ 0, ūᵀh > 0. Then, by (10c), we can construct
ȳ such that ȳᵀA ≤ 0 and ȳᵀb > 0 (so by Lemma 3, X (A, b) = ∅) and
we are done.

(iv-c) We get 0 �= x̄ J 0 ∈ X (H, 0). Then by (10b) and Proposition 9 we can
construct 0 �= x̄ ∈ X (A, 0). Note that since x̃, x̄ ∈ X (A, 0) then x̃ + x̄ ∈
X (A, 0) and J+ ⊂ { j | x̃ j + x̄ j > 0}. We now set x̃ ← x̃ + x̄ and
go to (ii).
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Since, by step iv-c, |J+| is monotonically increasing at each step without a resolu-
tion of F(A, b), this process terminates in at most n steps. The main computation of
the reduction (step ii) can be carried out by Gaussian elimination within a time poly-
nomial in n, where for rational data, all the numbers generated during the reduction are
bounded above by a polynomial function of the problem’s size. The rest of the calcula-
tions used in the reduction involve manipulating (adding, multiplying, decomposing)
matrices whose number of entries is bounded above by n2, and, for rational data, all
numbers are bounded above by a polynomial function of the problem’s size. All these
manipulations can be performed within a time polynomial in n. If one can perform the
required matrix manipulations with real numbers, then the reduction is applicable to
LF problems with real data. Thus, if the game solver used in the reduction is applicable
to payoff matrices composed of real numbers, a discovery of a strongly polynomial
algorithm for solving zero-sum games in real numbers would imply the existence of a
strongly polynomial algorithm for solving LP problems in real numbers. Note that the
reduction presented in Subsect. 3.1 implies that a discovery of a strongly polynomial
algorithm for solving zero-sum games could be applied only for LP problems with
algebraic numbers.

Finally, we note that the reduction presented in this section provides a proof of
Farkas’ Lemma (Theorem 5). Specifically, according to the reduction we conclude
either with x̄ ∈ X (A, b) (step iv-a) or with ȳ such that ȳᵀA ≤ 0, ȳᵀb > 0 (step iv-b),
which considering Lemma 3, completes the proof of Theorem 5. In the next section
we provide a more direct proof of Farkas’ Lemma.

4 From the minimax theorem to Farkas’ lemma

As discussed in the introduction, while the Minimax Theorem easily and directly fol-
lows from Farkas’ Lemma, this is not the case when going in the other direction. In
this section we show that the Minimax Theorem is essentially equivalent to Villes’
Theorem, a well known homogenous variant of Farkas’ Lemma. We then prove Far-
kas’ Lemma from Villes’ Theorem by way of Tucker’s Theorem, another well known
variant of Farkas’ Lemma. We start by stating the Minimax Theorem as applied to a
general zero-sum game (rather than to a symmetric zero-sum game as in Theorem 1).

Theorem 10 (Minimax Theorem—general zero-sum game)
Given B ∈ Rm×d , and denoting S(n) = {s ∈ Rn | eᵀs = 1, s ≥ 0},

max
x∈S(d)

min
y∈S(m)

yᵀBx = min
y∈S(m)

max
x∈S(d)

yᵀBx (11)

Next, we show that the well known Ville’s Theorem Ville (1938) is a direct corollary
of the Minimax Theorem as stated above. For B ∈ Rm×d let

XV (B) = {x | Bx ≥ 0, 0 �= x ≥ 0}, YV (B) = {y | yᵀB < 0, y ≥ 0}.

Theorem 11 (Ville’s Theorem) XV (B) �= ∅ if and only if YV (B) = ∅.
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Proof Suppose x̄ ∈ XV (B), and ȳ ∈ YV (B), then

0 ≤ ȳᵀ(Bx̄) = (ȳᵀB)x̄ < 0,

a contradiction. On the other hand, applying Theorem 10, we have that either the left-
hand-side of (11) is greater or equal to zero, or the right-hand-side of (11) is negative.
In the former XV (B) �= ∅, while in the latter YV (B) �= ∅. ��
Remark One can also prove the Minimax Theorem (as presented in Theorem 10)
as a direct corollary of Ville’s Theorem. In fact, von Neumann and Morgenstern in
their seminal book on game theory von Neumann and Morgenstern (1944), use Ville’s
Theorem as the main step in proving the Minimax Theorem for zero-sum games. Thus,
in a sense, Ville’s Theorem is a “natural equivalent” theorem to the Minimax Theorem.

Given the preceding theorem, a natural next step is to prove Farkas’ Lemma directly
from Ville’s Theorem. While many publications discuss Villes’s Theorem as a by-
product of Farkas’ Lemma, there seems to be no discussion about deriving Farkas’
Lemma directly from Ville’s Theorem. This is not surprising as it is not clear how to
“de-homogenize” the inequalities in XV (B). In the following we show that indeed it
is possible to derive Farkas’ Lemma from Ville’s Theorem by way of two other clas-
sical results regarding alternative systems of linear inequalities and equations, which
are known as Gordan’s and Tucker’s Theorems. We first introduce Gordan’s Theorem
Gordan (1873) which is actually Ville’s Theorem formulated in standard form where
XV (B) is replaced by

XG(A) = {x | Ax = 0, 0 �= x ≥ 0}.

Expressing Ax = 0 as Ax ≥ 0, −eᵀAx ≥ 0; setting B =
(

A
−eᵀA

)
, defining

YG(A) = {y | yᵀA < 0}, and applying Theorem 11, we get:

Theorem 12 (Gordan’s Theorem) XG(A) �= ∅ if and only if YG(A) = ∅.
As discussed throughout the LP literature, the following theorem, which is known

as Tucker’s Theorem Tucker (1956), plays a major role in proving many variants of
Farkas’ Lemma. Next, we show that Tucker’s Theorem can be proved directly from
Gordan’s Theorem. For A ∈ Rm×n , let

XT (A) = {x | Ax = 0, x ≥ 0}, YT (A) = {y | yᵀA ≤ 0}.

Theorem 13 (Tucker Theorem) There exist x̄, ȳ such that

x̄ ∈ XT (A), ȳ ∈ YT (A), and x̄ − AT ȳ > 0.

Proof Let {J+, J 0} be a partition of {1, . . . , n} where

J+ = { j | x j > 0 for at least one x ∈ XT (A)}.
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If J+ = ∅, then XT (A) = {0} which implies that XG(A) = ∅, so by Theorem 12
there exists ȳ ∈ YG(A). Thus x̄ = 0, together with ȳ, satisfy the theorem. Hence, we
assume J+ �= ∅. Now, for each j ∈ J+, let x̄ j ∈ XT (A) be such that x̄ j

j > 0 and let

x̄ =
∑
j∈J+

x̄ j .

Since Ax̄ = A(
∑

j∈J+ x̄ j ) = ∑
j∈J+ Ax̄ j = 0 and since x̄ = ∑

j∈J+ x̄ j ≥ 0, we

have that x̄ ∈ XT (A) and J+(x̄) = J+. If J 0 = ∅, then x̄, ȳ = 0 satisfy the theorem,
so we assume J 0 �= ∅. By the definition of J+,

{x | Ax = 0, x ≥ 0, xJ 0 �= 0} = ∅. (12)

Using the construction in (9) and (10a–10b), we have that (12) is true if and only if

{xJ 0 | H xJ 0 = 0, 0 �= xJ 0 ≥ 0} = ∅. (13)

Thus, by Theorem 12, there exist ū such that ūᵀH < 0, which, by (10c), implies the
existence of ȳ such that ȳᵀA = (0 ūᵀH), so ȳ ∈ YT (A) with ȳᵀA.J+ = 0 and
ȳᵀA.J 0 < 0. However, since x̄ ∈ XT (A) where x̄ J+ > 0, x̄ J 0 = 0, we have that
x̄ − Aᵀ ȳ > 0, which completes the proof. ��

Finally, we show that Farkas’ Lemma can be proved directly from Theorem 13,
completing the task of deriving it from the Minimax Theorem.

Proof of Theorem 5 (Farkas’ Lemma) . Consider the system of inequalities

(A − b)

(
x
t

)
= 0,

(
x
t

)
≥

(
0
0

)
, (14)

and

yᵀ(A − b) ≤ (0 0). (15)

By Theorem 13 there exist x̄, t̄ satisfying (14) and ȳ satisfying (15) such that

(
x̄
t̄

)
+

(−Aᵀ ȳ
bᵀ ȳ

)
>

(
0
0

)
,

so

Ax̄ = bt̄, x̄ ≥ 0, t̄ ≥ 0, ȳᵀA ≤ 0, ȳᵀb̄ ≥ 0, and t̄ + ȳᵀb > 0.

Thus, we conclude that either t̄ > 0, implying x̄ t̄−1 ∈ X (A, b), or ȳᵀb > 0,
implying ȳ ∈ Y (A, b). Combining this with Lemma 3 complete the proof. ��
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