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Abstract

Using a simple model to generate random linear programs we show that
the expected number of pivots needed to solve a parametric linear program
with d variables and n inequalities (where the parameterization is
applied simultaneously to the objective and the right hand side) is
bounded by min(d+l, n-d+1) . These results are extended to single and
multiple parametric linear programs in which either the objective
function or the right hand side (or both) are parameterized. We also
discuss the significance of our main result with respect to the average

number of pivots needed to solve a linear program by the Self-Dual method.



Introduction

The riddle of the gap between the time proven actual efficiency of
Dantzig's Simplex Method for linear programming and its apparent theoretical
inefficiency (for specially constructed "bad" problems) attracted a great
deal of research and interest in recent years. For the purpose of this
discussion we shall consider linear programs having d variables and n
inequalities (and define m=n-d); alternatively one can view such linear
programs as having n non-negative variables satisfying m equations
(and define d=n-m). Few variants of the Simplex method has been shown to
require exponential number of steps (pivots) in m and d for specially
constructed "bad" problems (see Klee and Minty [11], Jeroslow [10] Goldfarb
and Sit  [9], Avis and Chvatal [4]). On the other hand it has been observed
and reported that, typically, the number of pivots for Phase two of the

Simplex method is proportional to m (somewhere between 2m to 3m

s
~

for example see Dantzig [8], page 160). Moreover, some authors generated
randomly large numbers of linear programs and recorded the number of pivots
taken to solve these problems by several variants of the Simplex method
(see Kuhn and Quandt [12], Charnes et. al [7], Ravindran [14] and

Avis and Chvatal [4]). These results verify that in randomly generated
linear programs the number of pivots is proportional to m . The striking
observation about these studies is that regardless of the method used to
generate the linear programs and for all variants tried (including random-
pivoting rule and even specially designed "bad" variants) the number of
pivots in all cases was proportional to m (where the coefficients of
proportionality vary from 2 for "good" variants to about 10 for "bad"

variants).



More recently, some attempts were made to calculate the expected
number of pivots taken by some variants of the Simplex method for randomly
generated linear programs. Most notable in these attempts are the works
of Smale [15] and Borgwardt [5] which analyse parametric versions of
the Simplex method. In both models it has been shown that the number of
pivots is bounded above by a number that is mainly affected by min(m,d) ,
though the bound itself is still much larger than the observed average
number of steps either in practice or in randomly generated linear programs.
Our results in this paper were motivated primarily by two developments:

(1) The model for generating random linear programs which was presented

first by Adler and Berenguer [1,2,3]

provides a simple, natural model in which calculations of prob-
abilities and expected values are easily obtained by simple combin-
atorial arguments.

(ii) The papers of Smale [15] and Borgwardt [5] demonstrate the at-
tractiveness of analysing seldom mentioned parametric versions of
the Simplex method (in particular the Self-Dual Simplex method of
Dantzig [8], chapter 11). The point is that it is quite easy to
check whether or not a particular basic sequence is part of a
Simplex path without tracing the whole path whenever parametric
variants are used. Thus, one can analyse the average length of
a Simplex path by calculating the probability that a given basic
sequence is in the path.

Unfortunatly we can not at this point analyse directly the Self-Dual

Simplex method by the Adler-Berenguer model because the selection of starting
right hand side and objective function after the problem has been generated

violates the symmetry assumption of the model. Instead, our main result is



a geometrical one that we believe is closely related to the average number
of pivots taken by the Self-Dual Simplex method. Specifically we show that
if a linear program of the form

P(®): max (c + 8c')x

d

s.t. Ax< b + 6b' (where AeR™Y9, ber™ , cerd)

x>0
is generated randomly, then the expected number of basic sequences which
are optimal for at least one 6 (given that the expected number is not
zero) is less than or equal to min(m+1l, d+1)

The relation between this result and the Self-Dual Simplex method is
apparent since in this method (after selecting appropriate b',c' while
solving for b and c ) a basic sequence is part of the Simplex path
only if it is optimal for P(8) for some 6

It is also interesting to note that there exists 'bad" linear programs
of the form of P(8) in which the number of basic sequences which are
optimal for at least one 6§ is exponential in m and d . (See Murty [13]).

So if nothing else, our analysis demonstrates that despite
the existence of a polyhedral set with a long (exponential) path of basic
sequence optimal for P(§) from g = -» to 6 =« , the average length
of such a path is on the order of min(m+l, d+1) . So similar gaps in
the behavior of variants of the Simplex method should not be surprising.

We devote section 1 to the description of the model for generating ran-
dom linear programs. In section 2 we present some preliminary results related
to the model presented in section 1. In section 3 we present and prove our
main result as described above. In sections 4 and 5 we show that our

results can be straightfowardly applied to single and multiple parametric

linear programs in which either the objective function or the right hand



side or both are parametrized. In section 6 we summarize our findings in
light of the particular model which is used, and make some general observa-
tions about this model and offer suggestions for further research.
Notation

Given a matrix AerPX4 and sequences ICZ{l,...,p} and

J C {1,...,q} ,» We denote by A ,the submatrix of A associated with the

I
rows in I ; by A.J the submatrix of A associated with the columns in
J ; by AIJ the submatrix of A associated with the rows in I and the
columns in J . We also denote by Ai.the ith row of A and by Aj the jth
column of A .
We denote by Pr[E] the probability of the occurrence of event E .
We will also use the symbol [® at the end of a proof of a theorenm,

lemma or corollary.



1. Generating Random Linear Programs.

In this section we shall present the basic model for generating linear

programs which was first introduced by Adler-Berenguer [1,2].

Definition:
. mxd . . . . .
A matrix AeR is said to be full if every £ x % submatrix of A is
of full rank (where %= min(m,d)).
The model:

4 ber™, cer? such that (A,1,0) and (AL,1,8) are full

Select ReRmx
with probability 1. (These conditions assure that every d(m) supporting
hyperplanes of the constraints of the generated primal (dual) linear program
will intersect at a point and that no more than d(m) of the supporting
hyperplanes will intersect at a point).

For every i (i=1l,...,m} let

b.) with probability 1/2
i °i7 7 -(A._, b,) with probability 1/2

~

o

o

~—
|

(A ., 8.) with probability 1/2

A, c)=l =3 2 . -
°j j '(A-j’ cj) with probability 1/2.

Then generate the linear program:
P: max ch
s.t. Ax < b
x>0

Let n=m+d, then there are 2" different linear programs that can be

generated from a given A,b,c . We shall refer to each one of these programs
as an occurrence of P . Note that one can generate equivalent 2" linear

programs by keeping A,b,c and flipping the n inequalities between



< and > with probability of 1/2. For details of this model and its rela-
tionship to other models of generating random linear programs and to other
forms of linear programs we refer the reader to Adler-Berenguer [1,2,3].

An important aspect of this model is that we shall consider only
results (that is, probabilities and expected values) which are invariant
with respect to the choice of K,B,E and are functions of m and d only.

Another key property of the model is that the dual of P ,

D: min bTy

s.t. Aiy_i c

y20
is generated implicitly in the same way as P , thus all results with respect
to P can be applied to D by replacing d with m .

Given this model one can, by simple combinatorial arguments, calculate
probabilitiesfor avariety of events (e.g. P 1is feasible or D has an
optimal solution) and expected values of some random variables (e.g. the
number of feasible basic solutions for P given it is feasible).

We shall quote few of these results in the next section; for a detailed

discussion and analysis see Adler-Berenguer [1,2, 3].



2. Preliminary Results

In this section we present two theorems that will play a major role

in the development of our main results in section 3.

Theorem 2.1 (Adler-Berenguer [2,3])
Consider the following pair of primal-dual linear programs

P: max ch . D: min bTy

s.t. xeX(b)= x| Ax<b, x>0} s.t. ye¥(c)={y|Aly>c, y>0}

Let us assume that A is full.

Then,

exactly one of the following occurs

(@) X(0) # {0} ; Y(0) = {0}; and X(b) # § for all beR™

or:

{0} ; Y(0) # {0}; and Y(c) # # for all cer?.

(b) X(0)
Theorem 2.1 is a stronger version of the strong duality theorem of linear
programming for the special case in which (A1) is full. Obviously this
theorem applies to the model presented in section 1 since we assume that (R,I)
is full.
Theorem 2.2 (Adler-Berenguer [1,2,3])

Under the assumption for the model presented in section 1

d n
(2.1) Pr[P is feasible (i.e. X(b) # #)] = iEO {iJ

21’1

Corollary 1 (Adler-Berenguer [2,3])

For the same model

[[lSe=!
—
Hed

Pr[D is feasible (i.e. Y(c) # #)] = _i'OT'—
2

Theorem 2.2 (and other results of randomly generated linear programs) does

not depend on the form of the linear program (for detailed discussion see



Adler-Berenguer [2,3]). In particular, we will need in later sections the
following corollary to theorem 2.2.
Corollary 2 (Adler-Berenguer [2,3])
Consider the linear program
P”: max ch
s.t.Ax < b
Suppose P~ 1is generated analogously to P in section 1 from

AERHXd, beRn, cst where (A,b is full, then

)
d
: |3
i=ott

(2.2) Pr[P” 1is feasible] = ~
2



3. Parametric Objective-R*H-S Linear Program

In this section we develop and present our main results about the
expected number of extreme points which are optimal for a parametric
objective-rehes linear program.

Let us generate randomly the following parametric (with respect to the
objective function and the right hand side) linear program.

P(8): max (c+Bc)x
s.t. Ax<b+6b~

x>0

m d

mxd [ 7. ~n, .
, b,b"’eR", c¢,c’eR in a procedure analogous

P(6) is generated from AeR
to the one presented in section 1. (Here we assume that (A,I,b,b”) and
(A ,I,G,g') are full matrices).

Let us define as a basic sequence any sequence of indices s = (J,K)

composed of JC{l,...,m}, KC {l,...,d} and such that |s| =m . We
shall denote by s = (K,J) the sequence of indices composed of
J={1,...,m}-J and K= {1,...,d} - K (note that |s |=d).

Given a basic sequence s = (J,K) we denote

(3‘1) b = (A’K, I'J) b ; b = (A.K, I'J) b
- _ T_ _ ‘1 . . . T_ e —1 -
c = (A.J , _I-K ) ¢; ¢ = (A.J , -I~K ) ‘¢

We shall say that s is a primal feasible for P(6) if b +9b” >0

and that it is dual feasible for P(8) if c +6c” >0 . (Note that
s 1is primal (dual) feasible for P(8) iff s is dual (primal) feasible
for D(@)). Our main objective in this section is to investigate the
expected cardinality of the set S defined by:

S = {all basic sequences s which are optimal for P(@) for at least one 6}.
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Note that se S iff s is primal and dual feasible for P(8) for at least
one 6.
Lemma 3.1

Given P(6) which is generated randomly as above and a basic sequence

S we have:

Pr[seS] = n+l
n
2
Proof:
Let s = (J,K) and b, b~, ¢, and ¢” be as defined above in

(3.1). As we already observed, s is optimal for at least one © iff

there exists © such that

b b~

(3.2) || +e8|_|>0
LC c”
Thus
(3.3) Pr[seS] = no of occurrences for which exists a 6 satisfiying (3.2)

no of occurrences

Note that (3.2) can be considered as a one-dimensional system of n inequal-

ities.
.y - e < E}
c c
Moreover, the matrix -ﬁz, bJ is full and (—B;, B;) (or (—E;, E})) is as
likely as -(-E{, Ei_)c (0(1:' -(-EJ?, Ej)) , (i=1,...,m; j=1,...,d)

Hence (3.4) can be viewed as a randomly generated system of n inequal-
ities in R! which is generated by a model similar to the one presented in

section 1. So by corollary 2 to theorem 2.2, the system (3.4) has a

1 n
solution with probability ifo | Therefore
n
2 1 n
i
Pr(seS] = 1—2 = Bl
2 o
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Theorem 3.1

Blsh = [3) o

Proof:

Let I = { 1 if se§

s 0 if s¢s
Then (by using Lemma 3.1)
n] n+1

E(|S|]) = Z E(1I = P €S] = [
(l l) seS ( s) SES rises] d zn

X

Obviously E(|S|) is not a good measure for the expected number of basic
sequences in S since it includes occurrences in which S=@ . Thus we
shall be interested in E(ISI/ISI >0) .

Since E(|S]) = E([S|/|S| > 0) Pr[|s]| > 0] + E(|S|/|S| = 0) Pr[]|S| = 0]
we get that E(|S|/|S|>0) = E(|S|)/Pr[|S| >0] . So we have to find

Pr[|S| > 0] which is given in the next lemma.

Lemma 3.2
— {n + 2} _ {n]
prils| > 0] = 41/ (4]
n
2
Proof:
Pr[S| > 0] = Pr[P(0) and D(8) are feasible for at least one © ] =

(3.5) no of occurrences for which P(8) and D(8) are feasible for at least one 6

no. of occurrences

But P(8) 1is feasible for at least one 6 if the system of n inequalities
Rd+1:

has a solution.
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Since (A,-b I, b) is full, A-j is as likely as —A'j and

(A -b7, b.) 1is as likely as -(A. , -b7, bi)’ we get by theorem 2.2 that

io’ 1 1 1° 1
(3.6) no. of occurrences for which P(9) 1is feasible for at least one 8
d+1
is % [QJ
i=0
Similarly D(®) is feasible for at least one 6 if the system of n
inequalities in Rm+1
ATy -6c” > ¢
y2 o
has a solution. So,
(3.7) no. of occurrences for which D(6) is feasible for at least one 6
m+l
is I [Q]
i=0

Let us define

no. of occurrences for which P(6) is feasible for some 6 and D(9)

NP =
is infeasible for all 6.
ND = no. of occurrences for which D(8) 1is feasible for some 6 and P(8)
is infeasible for all 8.
NPD =no. of occurrences for which P(8) is feasible for some 6 and D(8)
is feasible for some 6 .
Now,
d+1 n
from (3.6) we get NP + NPD = .Z Ii)
i=0
m+1 0
from (3.7) we get ND + NPD = 'Z {iJ
i=0 *
Thus
d+1 m+1
(3.8) N, +N_+ 2N, = I [DJ + |
: P D PD . 1 . 1
i=0 1=0
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. n
Since there are 2 occurrences and by theorem 2.1 we get that

_ o0
(3.9) Np + ND + NPD 2

But, by theorem 2.2 for every occurrence either P(8) or D(8) is

feasible for all 6, thus NPD = no. of occurrences for which P(8) and

D(6) are simultaneously feasible for some ¢ ,

Subtracting (3.9) from (3.8) we get

d+1 m+]
NPD = Z [g] + I [?] - 2" = [d?lJ + [3] + [dzl] (since d=n-m)
i=0 i=0

n+2
d+1

Hence from (3.5) we have

]

(
lg] (by using the identity li] + lﬂfl] = [ 2 J )

(n+2 n
d+1} — {d

Pr[|S} > 0] =
S| o
X
Combining theorem 3.1 and lemma 3.2 we get our main result:
Theorem 3.2
- (n+1) (d+1) (m+1)
ECSI/[S]>0) = —my ) - @ D@D
Proof: fn+2 n
_ __E(sD _ [n} _n+l d+1) - {d]
E([sl/]S] >0) = wrsT5oT = l,dJ n / - n i
3] e
- (n+1) (d+1) (m+1)
5 a2y en) (0+2) (+1) - (d+1) (me1)
W @D !
X

Corollary 1

2 min(d+1, me1) < E(|S|/]S] > 0) < min(d+l, m+1)
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Corollary 2

lim E(|S|/|S| >0) = m+l
n->co
m is fixed
1im E(|S|/]S]| > 0) = d+1
hoo
d is fixed
Corollary 3
Let = Eiﬁﬁﬂigl So (1-0) = —ngﬁmigl then for large n
1-a)a l1-a .
E(|S|/[S| >0) 1-(a(12a) N = o) min (m,d)

Theorem 3.2 and its corollaries indicate that if the parametric object-
ive-rehes linear program P(g) is geﬁerated randomly then the expected
number of basic sequences which are optimal for P(6) for at least one §
(provided that there exists at least one such basic sequence) is quite
small, especially whenever d (or m ) is fixed and n goes to » .

The 1ist of all the optimal basic sequence for P(8) starting at
0 = -o» and going through 6 = 0 and then to 6 =« forms a path of adja-
cent basic solutions (i.e. each basic sequence can be obtained from its
predecessor by one pivot).

Thus the results of theorem 3.2 and its corollaries can be viewed as
the expected number of pivots in a parametric path for P(8) as described
above (given the path is not empty).

Hence we established that if one generates P(68) randomly (according
to our model) and a parametric (cost and rehes) analysis is performed, the
expected number of pivots will be in the order of min(m+1l,d+1) (given that
there exists at least one © for which P(®) has an optimal solution).

We will show in the next section that similar results hold for the parametric

r-hes or parametric objective function linear program. More intriguing
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is the relevance of theorem 3.2 to the efficiency of the Simplex method.
We will offer here two interpretations to this result that may throw some
light over the observed efficiency of the Simplex method.
(a) Consider the linear program
P: max ch
s.t. Ax f_b (where AeRde, beRm, ceRd)
x>0

The Self-Dual method of Dantzig ([8], Chapter1ll) proceeds by defining
b" =e ¢’ = e (where e is a vector of k 1's) and then solving
P(8) (as defined in the beginning of this section) starting at 6 =
and moving towards 6 = 0 . Obviously the number of pivots taken by this
algorithm is bounded above by the number of basic sequences which are
optimal for at least one § .

Note, that if we want to find the expected number of pivots taken by
the Self-Dual Simplex method we have to generate randomly A,b,c while
fixing b“, ¢® . This procedure however, differs from our procedure in
which b“, ¢ are generated in the same symmetrical way as A, b and c .
Thus, Theorem 3.2 cannot be directly used to obtain the expected number of
pivots taken by the Self-Dual Simplex method. However, we believe that
the similarity of the two models strongly indicates that the expected
number of inots taken by the Self-Dual Simplex method is bounded by a
linear or polynomial function of min(m,d) .

(b) Any ''bad'" problem with respect to the Self-Dual Simplex method (that
is, a problem that takes exponential number of pivots to solve) is also an
occurrence in which the number of basic sequences which are optimal for at

least one 6 1is exponential. Thus, theorem 3.2 demonsrates that

despite the existence of '"bad" case for problem P(p) (see Murty [13]),



the average is quite small, so it should not be surprising if the same
relationship holds between a 'bad" and an average problem solved by the

Self-Dual Simplex method.

16
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4. Parametric Objective Function Linear Programs and Parametric R+H.S

Linear Programs

In this section we shall show how the approach which was developed in
section 3 can be applied to two types of parametric linear programs
(i) parametric objective function and (ii) parametric rshes.

Since the applications of the method presented in section 3 are straight
forward we shall present only short outlines of the proofs.

Consider the following parametric objective function linear program
P(8): max(c + 6¢c)x

s.t. Ax < b

x>0

N d

where P(9) 1s generated from AeR™ , beRm, c,c’eRd similarly to P(9)

in section 3.

As in section 3 we define
S = {set of all basic sequences which are optimal for P(6) for at least one 6}
Lemma 4.1

Given P(8) which is generated randomly as above and a basic sequence

d+1

2]’1

s we have Pr{seS] =

Proof:
The proof is very similar to the proof to Lemma 3.1 except that we
look for 6 such that c + GE’_i 0 . Since c and ¢c* are d-vectors we

get d+1 instead of n+l in the expression for Pr[seS] .

Theorem 4.1

E(Is]) = [3} :;—1
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Proof:

See the proof to theorem 3.1.

X
Lemma 4.2 {HHJ
d
Pr[|S| > 0] = n
Proof:
Let us follow the proof of Lemma 3.2. In our case:
d ¢
Np + Npp = I l?} (probability of Ax < b being feasible)
m+1 n ‘T
Ny + NPD = 3 [i] (probability of (A'y > ¢ + 6¢”] being feasible)
i=0 y> o0
Thus:
w3, (1 B - B B )
PD - Tl 2, U d-1 d d
So:
n+l
pr[|s] > 0] = 42
ol
X
Theorem 4.2
S - (d+1) (m+1)
4.1) E(sl/ls] >0y = 22l
Proof:
Following the same lines as in the proof of theorem 3.2
n
__E(Js]) @@ e
E(|s]/]s] > 0) = = el © Tl
Pr[s| > o] [ d]
X

The results of theorem 4.2 obviously establish an upper bound to
the expected number of pivot steps (or ranges of optimality) which are en-

countered by performing parametric analysis on a linear program with
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objective function ¢ and parametric objective function c¢” (where both

are selected randomly and when we condition on having an optimal solution

for at least one 6 ).

Since the expression (4.1) is symmetric in d and m , it is obvious
that if we consider the parametric r+hes linear program,
P(8): max ¢ x

s.t. Ax <b + 6b”

and define S as in the beginning of the section we get that all the
results in this section are applied also to P(8§) above.

In particular it shows that the average number of steps of a parametric
reh*s linear program is the same as that of a parametric objective function

linear program.

Corollary 1

%min(d+1,m+1) < E(|S|/]S| > 0) < min(d+1,m+1)

Corollarz 2
(i) 1im E(|S|/|S] >0) = m+l

n-ooe
m fixed

(ii) lim n>e  E(|S|/]|S| >0) = d+1
d fixed

Corollary 3
min(m,d)

- (so (1-a) =

Let a =

_Eiféﬂigl.) then for large n

E(|S|/]|S]| >0) ¥(1-a) an = (1-0) min(m,d)

A comparison between the results in this section and the previous one
(in particular theorems 3.2 and 4.2) shows that the average number of steps
of simultaneous parametization of the objective and rc°h-s is_almost the

same as the parametization of only the objective function (or rehes) and
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exactly the same whenever n»>~ (while d or m are fixed).

This observation is not surprising considering the following intuitive
argument. Let
P(6,8): max (c + Gc')Tx

d , beR™ s ceRd )

s.t. Ax < b + 8b”  (where AeR™

Consider the partitioning of the 6,8 space to rectangles which represent
the regions of 0,8 over which a basic sequence is optimal for P(9,6)

(or regions in which either P(6,8) or its dual are infeasible).

Thus, in theorem 4.2 we get that the expected number of such rectangles
(given that there exists at least one optimal basic sequence) that the 9
axis goes through is equal to min(m+l,d+1). Similarly if we apply theorem
4.2 to the r-h°s parametric case we get that the expected number of rectangles
that the & axis goes through is also equal to min(m+l,d+1).

On the other hand, theorem 3.2 gives the expected number of rectangles
that the line 8 = § goes through; but since going through either axis gives
the same expected number of rectangles it can be argued that going along
any other line through the (6,6) space (including 6 = §), gives about the
same expected number of rectangles. Note that the comparison between
theorems 3.2 and 4.2 (and the above argument) suggests the superiority
of using the Self-Dual Simplex method over a two-phase parametric algorithm
in which a primal feasible solution is obtained by parameterizing the rch-s
and then an optimal solution is obtained by parameterizing the objective

function.



5. Multiparametric Linear Programs.

It is a relatively easy task to extend the results of sections 3 and
4 to the following three multiparametric linear programs:

T
pcb(el,...,ek). max(c + EIGQCR) X

2
k %
s.t. Ax <b + I ez b (k < min(m,d))
=1 -
x>0
K T
P (8,,...,8): max(c+ X 9 cz) X (k < d)
c 1 k = ) =
=1
s.t. Ax <b
x>0
T
P, (6.,...,6): max c X (k < m)
b 1 k K -
s.t. Ax <b + ZGQIbﬂ'
2 =1
x >0

All three models are generated from ReRde, b,bl,...,bkeRm,

c,C ,...,ckg;Rd analogously to P(8) as presented in sections 3 and 4.
For all cases we define S as before by
SCb = {set of all basic sequences for which there exists an optimal solution

for Pcb(e) for at least one (8 ..,Gk)}.

1°°

SC = {set of all basic sequences for which there exists an optimal solution
for Pc(e) for at least one (el,...,ek)} .
Sb = {set of all basic sequences for which there exists an optimal solution

for Pb(e) for at least one (6 ..,ek)} .

1’
Again we can use the techniques of sections 3 and 4 (which are presented
in detail in section 3) except that we have to modify the dimensionality of

the spaces in which we work.



(i) Pr[seSCb] = -
AH
NP E1
(ii) PrfseS ] = 1=0
c 0
k 1)\
o
.o (i
(iii) Pr[ses ] = —=9
b on
Theorem 5.1 § [n]
i
. _m i=0
1) E(lsy D = U -
2
k fd]
Ly
.. _ n i=Q\
(i) E(ls_ D) = [d] -
2
k .
A
R _ in 1=0\
(iii) E(|Sbl) = ldJ n
Lemma 5.2 d;k n]
. i
. _ i=d-k \
(1) Pr[IScbl > 0] = o
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6. Concluding Remarks

(a) As was mentioned in the introduction and in the discussion following
theorem 3.2, we have so far failed to get direct results for the expected
number of steps of the Self-Dual Simplex method. Trying to overcome this

difficulty seems to be a rewarding endeavor.

(b) Any result related to the expected number of steps of a variant of
the Simplex method requires a careful analysis of the model used to generate
the random linear programs.

In our own case, it is useful to quote the following theorem from
Adler and Berenguer [2,3].
Theorem 6.1

Let P be a linear program generated randomly as described in section

1, then

(i) Pr[P is infeasible] =

(ii) Pr[P 1is unbounded] =

n
(iii) Pr[P 1is optimal] = —iél—

2n

Thus in our model, the probability for a linear program to be optimal
(i.e. to have an optimal solution) is very small for large n .

In particular, if d (or m ) are fixed and mn»ew then the linear
program is practically infeasible (unbounded). So, a result about the
average speed of the Simplex method is actually a result about the average

speed to find that a linear program is infeasible (unbounded). Since
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finding that a linear program is unbounded (or infeasible) is easier than
finding an optimal solution (because there are many more terminating basic
sequences), an effort should be made to consider models which generate only

linear programs that have optimal solutions.

(¢) Even restricting our model to linear programs with optimal solution,

it is still far from representing linear programs which are encountered in
practical applications. The assumptions on general position and non-degen-
eracy can be justified by observing that a small perturbation of the con-
straint of any linear program would lead to their sétisfaction. However
these assumptions leave out a lot of important classes of problems (such as
transportation, assignment etc.). More disturbing is the symmetry assumption
which does not seem to be relevant to practical problems. The challenge

here is to consider models for randomization closer to reality but which

are simple enough to allow for theoretical analysis.

(d) Getting a good result for one variant of the Simplex method, leaves
still unanswered the question of the small average number of steps of

virtually any variant of the Simplex method. As was noted in the intro-
duction, parametric versions of the Simplex method are easier to analyse.
The challenge then, is to extend the analysis to non-parametric versions
(in particular to the oldest of all variants, the one that pivots on the

column of the most negative reduced cost).

(e) As was discussed in Adler and Berenguer [1,3], it is very difficult
to get the variances for the random variables whose expected values are

so easily obtained. Nonetheless, it is a problem to be considered, given
the very small observed variance of the number of steps for all known

variants of the Simplex method.
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Some progress with respect to the remarks above has already been made

and we hope to report on it in the near future.
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