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We show that a modified variant of the interior point method can solve linear programs (LPs) whose
coefficients are real numbers from a subring of the algebraic integers. By defining the encoding size of
such numbers to be the bit size of the integers that represent them in the subring, we prove the modified
algorithm runs in time polynomial in the encoding size of the input coefficients, the dimension of the
problem, and the order of the subring. We then extend the Tardos scheme to our case, obtaining a
running time which is independent of the objective and right-hand side data. As a consequence of these
results, we are able to show that LPs with real circulant coefficient matrices can be solved in strongly
polynomial time. Finally, we show how the algorithm can be applied to LPs whose coefficients belong
to the extension of the integers by a fixed set of square roots.
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1. Introduction

The question of whether a linear programming problem can be solved in polynomial
time was answered in a landmark paper by Khachiyan in 1979. In fact, both
Khachiyan’s ellipsoid method [10] and Karmarkar’s interior point method [9] solve
linear programs (LPs) with rational coefficients in time that is polynomial in the
number of input coefficients and the total number of bits in a binary encoding of
the problem data. Nevertheless, several interesting questions concerning the com-
plexity of linear programming remain open. One of the main open questions is
usually stated as: Is there a strongly polynomial algorithm for linear programming?
Following standard usage (cf. [19]), we say an algorithm for linear programming
is strongly polynomial if:

(S1) it consists of the elementary operations addition, subtraction, multiplication,
division, and comparison,

(S2) the total number of elementary operations performed by the algorithm is
polynomial in the number of input items (i.e., the number of coefficients in the
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matrices and vectors that define the linear program); and

(S3) when applied to a rational instance, the (binary encoding) size of the numbers
that occur during the course of the algorithm is bounded by a polynomial in the
size and total number of input items.

The conditional nature of (S3) stems from differences between rational-number
and real-number models of computation. The standard model of computation for
rational numbers is derived from the Turing machine. Consequently, the time
required to perform an elementary arithmetic operation (S1) depends on the bit
size of the operands. Requirement (S3) ensures that the time the algorithm spends
performing any intermediate calculation is polynomial in the input size. In the case
of real numbers, linear programming is usually modeled in terms of a machine that
can perform any of the elementary operations (S1) in constant time, regardless of
the nature of the operands. (See [4] for a rigorous treatment of general computation
with real numbers.)

Taking advantage of the dichotomy implied by (S3), we can split the question of
the existence of a strongly polynomial algorithm into two easier questions:

(A) If the data is rational, does there exist an algorithm satisfying (S1), (S2),
and (S3)?
(B) If the data is real, does there exist an algorithm satisfying (S1) and (S2)?

To date, efforts to find a strongly polynomial algorithm for linear programming
follow one of two main approaches, distinguished by whether they are directed at
question (A) or at question (B). Those efforts directed at question (A) involve
modifying existing polynomial-time algorithms, such as the ellipsoid method or
variants of the interior point algorithm, so that their running times become indepen-
dent of the size of at least part of the input data. In a key result along these lines,
Tardos [19] showed that a LP can be solved in time that is independent of the size
of the data in the objective and right-hand side vectors. As a consequence, LPs in
which the coefficient matrix has ‘“‘small”’ rational entries, such as those that arise
frequently in combinatorial optimization, can be solved in strongly polynomial time.
Recently, Norton, Plotkin, and Tardos [16] extended Tardos’ results by giving an
algorithm whose running time is independent of the size of the data in a fixed
number of rows or columns of the coefficient matrix.

Before discussing work directed at question (B), we mention some issues concern-
ing the existing polynomial algorithms for rational LPs. Both the ellipsoid and
interior point methods depend in a fundamental way on upper and lower bounds
on the magnitude of certain numbers related to basic solutions of the LP. These
bounds allow the algorithms to be properly initiated and terminated, and are
themselves part of the theoretical complexity of the algorithms. If the problem is
rational, the bounds are a function of the bit size of the problem data and can be
computed in polynomial time. If the problem is not rational, it is still possible to
compute the necessary upper bounds in polynomial time, but no polynomial method
for computing the lower bounds is known [13].
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The second approach toward finding a strongly polynomial algorithm for linear
programming focuses on answering question (B) for special classes of LPs. Consider-
ing the discussion above, it is not surprising that these efforts generally involve the
construction of algorithms that are greatly different from the existing polynomial
algorithms for rational data. The work of Megiddo provides important examples of
this second approach; in [11] a strongly polynomial algorithm is given for feasibility
problems in which at most two variables appear in each inequality, and in [12] a
strongly polynomial algorithm is given for problems in which the number of variables
is fixed. Interestingly, the combination of the ideas in this latter algorithm with
those in [19] led to the algorithm in [16].

In this paper, we show that linear programs whose coefficient matrices are circulant
can be solved in strongly polynomial time. (LPs of this kind are related to discrete
convolution and arise frequently in image processing.) In proving this result we are
led to an analysis of polynomial-time algorithms for linear programming in a subring
of the algebraic integers. Specifically, we show that a variant of the interior point
method can solve LPs whose coefficients are real members of the set

-1
W, = {a: a= pz aw’; a; integer Vj} ,
j=0

where @ =e>™? is the first primitive pth root of unity. (We lose no generality by
working with the subring W, instead of the subfield 2,={y:y =Zj:; q;0’; q;
rational Vj}.) The restriction to W, allows us to define the “encoding size” of the
input number « to be the bit size of the integers aq, ..., a,-; in the representation
a= Zj:(; aw’.

The key to our construction is our ability to obtain “reasonable” upper and lower
bounds on certain quantities involving the basic solutions of the LP. These bounds
are a function of p (the order of the subring in which we work) and the encoding
size of the data. We use these bounds to show that the modified algorithm’s running
time is polynomial in the dimension of the LP, the order p of the subring, and the
encoding size of the data. We then proceed to modify the scheme given by Tardos
[19] for rational data so that it works with data from W,. The modified Tardos
scheme gives us an algorithm whose running time is independent of the encoding
size of the objective and right-hand side data (in fact, the objective and ﬁght—hand
side vectors are allowed to be arbitrary real numbers).

Finally, we show that the numbers belonging to the extension of the integers by
a set of positive integer square roots are embedded in W, for some known p. Using
our earlier results, we then obtain an algorithm to solve LPs with such coefficients
in time that is polynomial in the problem dimension, the encoding size of the input
data, and the product of all the square roots.

The paper is organized in the following manner: In Section 2, we discuss circulant
matrices and show that LPs with a circulant coefficient matrix can be polynomially
transformed into an equivalent LP in which the entries of the coefficient matrix are
small in magnitude and belong to W,, where n is the dimension of the matrix. We
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also show that if the original data is rational then these entries are integers. In this
case, the Tardos scheme [19] gives us a strongly polynomial algorithm directly. In
Section 3, we analyze general LPs whose coefficients belong to W,. In particular,
we modify a variant of the interior point algorithm to solve these problems in
polynomial time. In Section 4, we use the results of Section 3 and the scheme in
[19] to obtain an algorithm that runs in time independent of the encoding size of
the objective and right-hand side data. In Section 5, we show how our results can
be applied to LPs whose coefficients belong to an extension of the integers by a set
of square roots. Finally, in Section 6, we conclude with some remarks.

2. Linear programming with circulant matrices

In this section we bound the complexity of linear programs whose coeflicient matrices
are circulant.

Definition. The n X n matrix A (possibly with complex entries) is said to be circulant
if and only if it has the following form:

Ao a o Ay Ay
a,-, Qo Tt Qpz Qpp
A= .
43} a - 4y Gy
Given a vector a' = (ay,...,a,_,), we shall use circ (a) to denote the circulant

matrix defined above. (If M is a matrix or vector, we use M to denote the transpose
of M.)

Circulant matrices are closely related to the vector operation of discrete convol-
ution; the discrete convolution of the n-vectors a and b is defined to be the n-vector
circ(a)"b. Discrete convolution appears in a variety of physical models, particularly
in the area of signal processing. Our interest in convolution and circulant matrices
developed as part of computational work in tomography of the Earth, an area which
shares with signal processing the inverse imaging problem of reconstructing a true
signal from an observed but distorted one. Below, we give a simplistic account of
a problem in inverse imaging and show how linear programs with circulant coefficient
matrices arise in this context.

A discrete approximation to the spectrum of a light source can be obtained by
passing light from the source through a spectrometer and measuring its intensity at
each of a discrete set of wavelengths. Because spectrometers have finite resolution,
the intensity recorded at any particular wavelength is usually contaminated by the
intensity of the source at neighboring wavelengths; thus, the observed spectrum is
a somewhat “‘smeared” version of the true one. This distortion can be modeled
using convolution and the characteristics of the spectrometer and the source.
Specifically, if the n-vector x contains the true intensity of the source at n equally-
spaced wavelengths and the vector b represents the intensity actually observed at
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those wavelengths, a reasonable model of the distortion phenomenon is given by
b = circ(a)x. The vector a is derived from known characteristics of the spectrometer.

A common problem in this context is the reconstruction of the true spectrum
from a set of observed intensities. Under the above model, this task is equivalent
to solving the equation circ(a)"x = b for the unknown x. It is often the case, however,
that any one of a number of true spectra could lead to the observed data, implying
circ(a) is singular and the distortion equation has no unique solution. In this case,
instead of a unique solution, one usually looks for a physically valid solution that
minimizes a linear functional with some interesting interpretation. As a simple
example, one may desire the nonnegative spectrum with the smallest intensity in
the jth wavelength that is consistent with the observed spectrum. The desired
spectrum, of course, is the solution to the linear program {min e x|circ(a) x = b,
x =0}, where ¢ is the jth unit vector,

This last problem belongs to the class of LPs we analyze in this section. Specifically,
we consider the following standard-form problem:

(P) min ¢'x
st. Ax=b,
x=0,

where a, b, ¢, xcR" and A =circ(a).

To analyze (P), we need to develop a number of the properties of circulant
matrices. We begin along these lines by defining a matrix with the interesting property
that it diagonalizes every circulant matrix.

Definition. Let w be the first primitive nth root of unity; that is,

w= eZ'n'i/n’

where i=+v—1. Then we define the n X n matrix F, to be

1 1 1 1
B 1 wl wn72 wn—l
F,
1 wn—l (L)2 wl

In general, the jkth component of F, is @Y V%™V,

The matrix F, is usually called the nth order Fourier matrix, the label Fourier
coming from the fact that the product F,a can be used to define a discrete Fourier
transform of the n-vector a. By using the identity w’ = @’ ™*" and by manipulating
geometric series, it is easy to show that v1/n F, is unitary; that is, F,' = (1/n)F},
where F* denotes the Hermitian transpose of F, (the jkth component of F7F is
o™ %Dy In an effort to keep notation simple, we omit the index n on F, when
the size of the Fourier matrix is clear from the context of the discussion.

We now state several well-known results on circulant matrices. Detailed proofs
of these results can be found in [5].



126 1. Adler, P.A. Beling / Polynomial algorithms for LP over a subring

Proposition 2.1. (i) Let A=circ(a) be an n X n circulant matrix. Then the columns of
the nth order Fourier matrix F are eigenvectors of A and the entries of the n-vector
Fa are the corresponding eigenvalues.

(ii) A is an nxn circulant matrix if, and only if, A=(1/n)FGF* for some nxn
diagonal matrix G. [J

As an easy corollary, we have the following useful fact:
Corollary 2.1. Let A and B be circulant matrices of the same order. Then AB = BA. [

Proposition 2.1 can also be used to show that the class of circulant matrices is
closed under the operations of addition, multiplication, (Hermitian) transposition,
inversion, and pseudoinversion. This last operation, which is formally defined below,
will be of fundamental importance when we turn to linear programming.

Definition. Given a matrix M, we use the term pseudoinverse of M to denote the
unique matrix M~ that satisfies

(i) MM™M =M;

(i) MMM =M";

(iii) MM " =(MM™")*,

(iv) M"M=(M"M)*,

(Some authors refer to M~ as the generalized inverse or the Penrose-Moore
inverse of M).

It is particularly easy to express the pseudoinverse of a circulant matrix in terms
of the Fourier diagonalization given in Proposition 2.1.

Proposition 2.2. Let G be an n X n diagonal matrix and let A=(1/n)FGF*, Then,
the pseudoinverse of A is given by A" = (1/n)FG" F*, where G is an n X n diagonal
matrix with entries

Gt = {I/ij if G; #0,
7o otherwise. O

It follows from Proposition 2.2 and part (ii) of Proposition 2.1 that the matrix A
is circulant if and only if its pseudoinverse is circulant.

As the next result shows, it is easy to compute the pseudoinverse inverse of a
circulant matrix.

Proposition 2.3. Let A be a given n X n circulant matrix. Then it is possible to compute
A" from A using only Gaussian elimination and a constant number of matrix multiplica-
tions, each of order n.
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Proof. Consider the system A’X = A, where X is an nxn matrix of unknowns.
This system has at least one solution, namely (A™)>. To see this, note that since A
and A" are both circulant they commute by Corollary 2.1, and so

A (A =AATAATA=AATA=A,

by property (i) of the pseudoinverse. Thus we can find a particular solution X to
A’X = A by Gaussian elimination. Now,

(A*) A’ X =(A)A.
Hence,
AX=A",

which completes the proof. [

We turn now to an analysis of the linear program (P). Our strategy for establishing
the strongly polynomial-time solvability of (P) is centered around a problem transfor-
mation. Briefly, we transform the given problem into an equivalent problem in which
most of the information in the coefficient matrix has been “pushed” to the right-hand
side. We then show that the transformed problem can be solved in time independent
of its right-hand side.

We begin with a simple observation that will be of use in transforming (P) into
an equivalent but more transparent problem.

Proposition 2.4. Let M cC™* geC" ve C®, and suppose that the system Mv = g has
a solution. Then, {v|Mv=g}={v|M " Mv=M"g}.

Proof. The proof follows easily from the observation that the null space of M is
the same as the null space of MM by property (i) of the pseudoinverse. [J

It follows from the last proposition that if Ax = b is consistent then (P) is equivalent
to the following problem:

(P) min ¢'x
st. nATAx=nA"b,
x=0.

An interesting aspect of this transformation is that the entries of nA"A, the
coefficient matrix of (P’), have a particularly simple and useful representation in
terms of the nth roots of unity. This representation is the subject of the next
proposition.
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Proposition 2.5. Let A be an n x n circulant matrix. Then each entry o of the matrix
nA*A can be written in the form

2ni/n

where w =¢ and where d; is either 0 or 1.

Proof. By Propositions 2.1 and 2.2, we can write
A"A={(1/n)FG" F*}{(1/n) FGF*}

for some n x n diagonal matrix G. Using the identity (1/n)F*F = I, we then have
nA*A= FDF¥*,

where D is a diagonal matrix with ones and zeros in positions on the diagonal that
correspond to the positions of the nonzero and zero elements of G, respectively.
Proof of the statement follows easily from this expression by using the definitions
of F and F* and the identity o’ =@’ ™", O

We shall use the representation given in Proposition 2.5 to show that the entries
in the coefficient matrix of problem (P’) are nice in some sense. Toward this end,
it is useful to view these entries in terms of a standard notion from algebraic number
theory, which we discuss next.

Definition. A complex number « is called an algebraic integer if there exists integers
dy, ..., d,_, such that a*+d,_;a* '+ -+ +d,=0.

Note that because it satisfies the polynomial equation " —1=0, the number
w =¢e”™/" is an algebraic integer by the above definition.
Proposition 2.6. The set of algebraic integers is closed under addition, multiplication,
and negation. [

Since w is an algebraic integer, Proposition 2.6 implies that if « has the form
@ :Z]':ol dw’, where d; is integer, then a is an algebraic integer.
Next, we present a standard result from number theory that will be of key

importance when we derive complexity bounds for rational instances of (P).
Proposition 2.7. An algebraic integer is rational if and only if it is an integer. [

Proofs of Propositions 2.6 and 2.7 can be found in most texts on algebraic number
theory (see, e.g., [8]).
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If the coefficient matrix A in (P) is rational we can use Propositions 2.6 and 2.7
to make a strong statement about the form of the entries in nA* A, the coefficient
matrix of (P'):

Proposition 2.8. If A is an n X n circulant matrix with rational entries, then the entries
of nA* A are all integers.

Proof. It follows immediately from Propositions 2.5 and 2.6 that each entry of nA* A
is an algebraic integer. But since each entry of A is rational, we see by Proposition
2.3 that each entry of A", and hence each entry of nA* A, is also rational. Proof of
the proposition follows by noting that since each entry of nA* A is both a rational
number and an algebraic integer, it must be an integer by Proposition 2.7. I

Armed with the above results, we can easily bound the complexity of rational
instances of (P):

Theorem 2.1. Suppose that A is an n X n circulant matrix and that the entries of A, b,
and c are rational. Then (P) can be solved in strongly polynomial time.

Proof. As a preprocessing step in the solution of (P), one can use Gaussian elimina-
tion to check the consistency of Ax=>b. If Ax=b is inconsistent, then obviously
(P) is infeasible and no further work is required. If Ax =b is consistent, then by
Proposition 2.3 one can convert (P) into the equivalent problem (P') using Gaussian
elimination and matrix multiplication. In either case the dominant computational
work is Gaussian elimination, which is a strongly polynomial operation (see [6]).

In Proposition 2.5 we established that every entry « in the coefficient matrix
nA"A has the form o =Y | dw’, where d, is either 0 or 1. Since |w’| =1 for all j,
we see that || < n. But because we assume that A is rational, @ must be an integer
by proposition 2.8. Thus, the coefficient matrix of (P') contains integers of absolute
value at most n. Moreover, the right-hand side and objective vectors of (P') contain
only rational numbers, since by Proposition 2.3 we can construct (P’) from (P) using
only Gaussian elimination and matrix multiplication.

Tardos [19] showed that LPs of the form (P') with rational coefficients can be
solved in time polynomial in the problem dimension and the binary encoding size
of the numbers in the coefficient matrix. By the above arguments, the binary encoding
size of nA*A is bounded by a polynomial in the dimension of (P'). Hence, (P'),
and therefore (P), can be solved in strongly polynomial time. O

For the purpose of analyzing LPs with circulant coefficient matrices and real
coeflicients (including those in the objective and right-hand side), we adopt a model
of computation that allows constant time addition, subtraction, multiplication,
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division, and comparison of real numbers. Under this model we have the following
result:

Theorem 2.2. Suppose that A is an n X n circulant matrix and that the entries of A, b,
and ¢ are real numbers. Then (P) can be solved in strongly polynomial time.

To prove Theorem 2.2 we need a number of new results concerning the numbers
in nA* A. These results, which we shall obtain in Sections 3 and 4, lead in a natural
way to an analysis of linear programming in a subring of the algebraic integers.
The proof of Theorem 2.2 follows directly from this analysis and is given at the end
of Section 4.

3. LP over a subring of the algebraic integers

We consider the following primal-dual pair of LPs:

(P) min c¢'x
st. Ax=hb,
x=0,

(D) max by
st. Aly+z=g,
z=0,

where AeR™™ ", beR™, and ¢, x€R". Throughout this section we assume that all
entries of A, b, and c are real and belong to the following set:

-1
VVI,={a: a :1?20 ajwj; aeZ Vj},
o
where w =e°™/? and where Z denotes the integers. We shall use V, to denote the
set of all real members of W, ; thatis, V,= W,nR.

Note that, because w’=w’™"” the set W, forms a subring of the complex
numbers (i.e., W, is closed under addition, multiplication, and negation).

It is also important to note that we lose no generality by working with the set W,
instead of the larger set {2, ={y|y = Z;:; gw’; q; rational Vj}. It is well known from
number theory that £2, is precisely the subfield I, ={y|y=a/8; B#0; a, B W,}.
Hence, by multiplying through by a common denominator we can transform any
LP whose coefficients belong to I, (={2,) into an equivalent problem whose
coefficients all belong to W,.

We now develop some properties of W, that will prove useful in the analysis of
linear programming to follow. We begin by giving explicit expressions for the
addition and multiplication of members of W,.
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Proposition 3.1. Let =Z}C{§ aw’ and =17 _, bw’, where a; and b; are integers for
all j, and let a"=(ao, ...,a,_,) and b" = (b,,..., b, ;). Then:

Q) If y=a+B, then y=Y"_) q,:wj, where ¢ = (co, ces ) =a+b.

(ii) If y=apB, then y=3"_ cw’, where c=(co, ..., ¢,_y)" =circ(a)"b.

Proof. Statement (i) is obvious. Statement (ii) follows directly from the fact that
w/ = ™7 O

Our immediate goal is to establish upper and lower bounds on certain functions
of @€ W,. To obtain these bounds, we need a measure of the magnitude of the
coefficients a,, ..., a,_, in the representation o= P , @o’. This representation,
however, is not unique for general p, since Z" , @’ =0 for p> 1. The question of
uniqueness of representation motivates us to measure the magnitude of the rep-
resentation of « in the following manner:

Definition. Given « € W,, we define the representation height of a with respect to
W, to be:

S,(a)= mm{ ]aia—Zaw anV]}

j=
where » =e¢*™/?, We include the index p on S,(a) only when there is danger of
confusion regarding the set W, with respect to which the representation height of
a is to be taken. (Representation height should not be confused with any of the
various notions of height encountered in number theory.)

Next, we state the main algebraic and metric properties of representation height.

Proposition 3.2. Let o, B W,. Then:
(i) S(ac+bB)=<|a|S(a)+|b|S(B) for any integers a and b.
(ii) S(aB)=S(a)S(B).
(iii) |a|=S(a).
(iv) Ifa#0, |a|=(S(a))'*.

Proof. (i) This statement follows directly from the definition of the function S and
part (ii) of Proposition 3.1.

(ii) Define vectors a, be Z” such that S(a)=|al;, « Z aw’ S(B)=\bl,
and B = Zp Ibw’ (By the definition of S such vectors must exist.) Let y=ap.
Then, by part (ii) of Proposition 3.1, we have y= j:; ¢w’, where c=
(co,vnn, cp_,)T= circ(a)"h. Hence,

S(y) < elli = |lcire(a) bl < [|cire(a) |, bYly = lallif|bll: = S()S(B).

(i) Let aeZ” such that a=Y')aw’. Then we have |a|=|}Y"; aw’|<
Zf ;‘%”wjl— b S lal=S(a), as des1red
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(iv) Define aZ? such that S(a)=|a|, and a =Y’_, a,»’. Now consider A=
j=0 "

circ(a). It follows from part (i) of Proposition 2.1 that A is a normal matrix (i.e.,
AAT = ATA). This fact implies that the eigenvalues of AA™ are |do|%, |4, ..., ]d,_.]%,
where 4, =(Fa); is (again by Proposition 2.1) the jth eigenvalue of A. Let J=
{jld;# 0}. Then by a standard result of linear algebra (see, e.g., [7]) we have

IT |4,/ =sum of all principle minors of AA™ of order |J|,
JjeJ

where |J| denotes the cardinality of the set J. Because the entries of AAT are all
integers, this last equality implies [[,., |d;]*= 1. Note that the index 1 belongs to J,
since we assume that @ =d,#0. Now, using the inequality |d,|=[3]_; aw’™|<
Z;’;; la;| = S(a), we have

|a|=(S(@))"V'= (S(a))' 7,

which completes the proof of the proposition. [J

We shall use Proposition 3.2 to derive several useful results concerning matrices
and systems of equations whose coefficients belong to W,. These results are most
easily stated in terms of the quantities introduced below.

Definition. Let M be an rxs matrix all of whose entries M; belong to W,. We
define the representation height of the matrix M to be

T(M) = max{S(M;0)}.

Let ! denote the rank of M, and let
A(M)=(IT(M))"
Then we define the representation size of the matrix M to be
L(M)=1log(A(M)).
We use similar notation when discussing linear programs. Let (Q) denote the problem
{min f"v| Mv =g, v =0}, where the entries of M, g, and f all belong to W,. Let ¥

denote the set of all entries in M, g, and f. We define the representation height of
the linear program (Q) to be

(M, g,f)={3eag{5(a)}-

Let ! denote the rank of M, and let

A(M, g,f)=(T(M, g )"
Then we define the representation size of the linear program (Q) to be

L(M, g, f)=1log(A(M, g, f)).
We use analogous notation with respect to systems of linear inequalities. Specifically,
we define the representation height and size of the system {Mv =g, v=0} to be the

representation height and size of the linear program {min Ov|Mv =g, v=0}. We
write these quantities as T(M, g) and L(M, g).
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Having fixed notation, we now state some key properties of matrix determinants.

Proposition 3.3. Let B be an r X r nonsingular matrix all of whose entries B belong
to W,, and let A= A(B). Then:
(i) det(B)e W,.
(i) S(det(B))=A.
(iii) A'7P<|det(B)|=<A.

Proof. Let J be the set of all r! permutations of (1,2,...,r) and let j=(j;,...,J,)
be a member of J. Then, by the definition of the determinant of a matrix, we can write
det(B) = Z (:t)(Blj, t Brjr)-
jeJ
Statement (i) follows immediately from this expansion and the fact that W, is closed
under the operations of addition, multiplication, and negation. Now, taking the
representation height of both sides of the expansion and using Proposition 3.2 gives

S(det(B)) = S(ZJ (:t)(Bljl Tt Brj,)) ) S(Bljl) Tt S(Brj,)

jeJ
< 2 (T(B))" =r(T(B)) < (rT(B)) = A.
jeJ
This proves statement (ii). Statement (iii) follows directly from Proposition 3.2 and
statements (i) and (ii). [

As a corollary we have the following result:

Corollary 3.1. Let M and g be r X s and r X 1 matrices, respectively, all of whose entries
belong to W,, and let A = A(M, g). If ¥ is a basic solution to the system Mv =g, then
every nonzero component 0; of ¥ satisfies A77 < |6]| s AP,

Proof. The statement follows trivially from Cramer’s rule and Proposition 3.3. [

Using the above results, we can modify almost any variant of the interior point
method [9] or the ellipsoid method [10] to solve problem (P) in polynomial time.
In the remaining part of this section, we shall show how to modify the primal-dual
path following algorithm and its analysis as presented in [14] and [15]. Since most
of the algorithm and analysis are not affected by the change from rationals to V,,
we present only the necessary modifications.

For the purposes of the complexity analysis, we assume that we have a machine
that performs addition, subtraction, multiplication, division, and comparison of real
numbers in constant time per operation. Implicit in our derivation of the basic
complexity results is the assumption that, for any instance of (P), a bound on the
representation size of the instance is part of the input data. (For our purposes, this
assumption is essentially equivalent to the requirement that S(a) be part of the
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input for every coefficient « in the problem instance.) Later, we adopt a more natural
input scheme and show that the basic complexity results extend easily to this case.

In the following two propositions, we use the properties of the set W, and the
function S to establish a theoretical stopping point for an interior point algorithm
applied to (P) and (D). Because the discussion involves systems of inequalities and
linear programs, we shall assume that the matrices and vectors we encounter are real.

Proposition 3.4. Let M and g be rx s and r X1 matrices, respectively, all of whose
components belong to V,. Let 0 <8< A" be given, where A = A(M, g). Let e, denote
the r-vector of all ones. Then the open system Muv < g+ 8e, is feasible if and only if
the closed system Mv =< g is feasible. Moreover, given a solution to one system we can
Jfind a solution to the other system in time polynomial in r and s.

Proof. The proof is an adaptation of that given by Papadimitriou and Steiglitz [17,
Lemma 8.7, pp. 173-174] for an analogous result concerning systems with rational
coefficients. The main difference lies in the use of the properties of representation
height (Proposition 3.2) to derive lower bounds on integral polynomial forms
involving members of V.

Obviously, any solution to the closed system is also a solution to the open system.
Conversely, let © be a solution to Mv < g+ 8e,. We shall show how to construct a
solution to Mv =< g.

Let M, denote the jth row of M, and consider the set of indices

J={jlg=M,5<g+8}.

We may assume that, for all k, M. =}, , Bi;M;. for some linearly independent
subset J, of J, since otherwise we can increase the cardinality of J by solving a
corresponding Gale system (cf. [17]).

By Cramer’s rule and Proposition 3.3, the coefficient 8;; can be written in the
form By; = v/ |$|, where v, p€ W, and S(y)<A4 and S(¢)<A.

Now, let ¥ be a solution to the equations M ;. v=g;, for jeJ,. Then, for ke J,,
we have

|p|(My.5—g) =Y vyM,.0—|d|g

Jjen
=Y g —ldla (*)
jeh
:—,ZJ ')’kj(Mj~5_gj)+|¢|(Mk-5_gk)
Jjehy

<o( 3 Inl+lol)

Jjedy
<§(s+1)4

< AZ(I*p)'
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But by taking representation heights of equality (*) we have

S(“b‘(]\’fk-ﬁ_gk))s 3 S('ij)s(gj)+s(|¢|gk)sA< > S(gj)+s(gk)><A2-

jelt je

From this last inequality and Proposition 3.2, we see that |¢|(M,.5 —g,)= 4% P
if and only if |¢|( M. 5 — gi) > 0. But since we also have |¢|(M,. 7 —g,) <A77, it
must be that |¢|(M,.7—g)=<0. Hence (M,.7—g) =<0, and we see that ¥ is the
desired solution to Mv = g. Proof of the proposition follows by noting that we can
construct ¢ in time polynomial in r and s using Gaussian elimination. O

Proposition 3.5. Let the primal-dual pair (P) and (D) be given and let all the entries
in A, b, and c belong to V,. Assume we have a point w = (%, y, Z) feasible to (P) and
(D) that satisfies X"z <(6n4)"**?, where A = A(A, b, ¢). Then from W, we can find a
point w¥ = (x*, y* z*) in no more than O(n’) arithmetic operations, such that x* is
optimal to (P) and y* and z* are optimal to (D).

Proof. The proof is essentially the same as that given for the rational case in [15,
Proposition 4.2], provided Proposition 3.4 is used in place of the analogous result
employed there. [

Next, we state the minimum improvement made in the duality gap during each
iteration of the primal-dual path following algorithm.

Proposition 3.6. Let w’=(x°, y°, z°) be a valid initial point for the primal-dual path
Sfollowing algorithm given in [14] when applied to (P) and (D). Then the algorithm
generates a sequence of feasible points w* = (x*, y*, z*) satisfying

(x")'2* < (x)72°(1 - gV1/n),

for some constant 0<g=<1.

Proof. The statement follows directly from the fact that the convergence proofs
given for the algorithm in [14] do not rely on rationality of the input data. [l

We can now state the main results of the section.

Theorem 3.1. Let 8= L(A, b, ¢) be given. Then, under the model of computation
discussed above, problems (P) and (D) can be solved in time polynomial in p, n,
and 8.

Proof. For rational data, it is shown in [15] that the solutions to (P) and (D) can
be obtained by solving a pair of artificial problems whose size is order of the size
of (P) and (D). The artificial pair has the property that a valid starting point, with
known duality gap, is readily available for the primal-dual algorithm. In our case,
it is a straightforward exercise to show that we can construct a similar pair of
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artificial problems whose representation size is order of L(A, b, ¢) and whose starting
point has a duality gap that is 2°(?®), Using Propositions 3.5 and 3.6, it is easy to
show that, given this initial duality gap, the number of iterations performed by the
primal-dual algorithm is polynomial in p, n, and 8. Proof of the theorem then
follows by noting that the work performed in each iteration of the algorithm is
polynomial in n. [J

Theorem 3.1 is derived under the assumption that a bound on the representation
size of (P) is input along with the problem coefficients. As an alternative, we may
consider a model of input based on an integer representation of the problem
coefficients. In this model, we assume that every number « € V,, in an instance of
(P) is encoded for input as a set of integers aq, ..., a,—;, such that « =Z]’:(; ajw’.
To ensure « can be calculated from its integer representation, we also assume that
the machine has available the real part of w (=cos 2w/p), or that it can calculate
this number.

We work with a different measure of input size in the integer-based model. We
define the encoding size of @ € W, to be the sum of the binary encoding sizes of the
integers ao, ..., a,_, in the above expansion. Similarly, we define the encoding size
of a matrix or LP to be the sum of encoding sizes of its coefficients.

We now restate our earlier complexity bounds in terms of the integer-based input

model.

Theorem 3.2. Under the model of computation discussed above, problems (P) and (D)
can be solved in time polynomial in p, n, and the encoding size of (P).

Proof. The result follows immediately from Theorem 3.1 by noting that L(A, b, ¢)
is bounded by a polynomial in the encoding size of problem (P). [J

4, Tardos scheme for LP over a subring of the algebraic integers

In this section, we use the results of Section 3 to modify the Tardos scheme for
solving combinatorial linear programs [19]. The modifications permit us to solve
problem (P) of Section 3 in time polynomial in n, p, and the size of the matrix A,
independent of the objective and right-hand side data. (In fact, the objective and
right-hand side coefficients may be arbitrary real numbers.)

We shall follow the presentation of Tardos’ algorithm given by Schrijver in [18,
Section 15.2], although we present only those key propositions needed for the switch
from rationals to V,,.

We consider (P) and (D), the primal-dual pair of LPs defined at the beginning
of Section 3. In order to show that these problems can be solved in polynomial time
independent of the numbers in b and c, we need several sensitivity results and a
guarantee that we can find a feasible solution in time independent of the size of
the right-hand side. We begin with the sensitivity results (Propositions 4.1 and 4.2).



I Adler, P.A. Beling |/ Polynomial algorithms for LP over a subring 137
Let z’ be defined as the solution of the foliowing probiem:

min  ||z||,

st. ATy+z=c
As in [18], we may assume z’' # 0 without loss of generality. Now define the vector
¢ as ¢/=(mnA?""/|z'||»)z’. Note that ¢’ can replace c in (P) without changing the
optimal solution. Hence, we lose no generality by assuming that the objective vector
¢ in (P) already has the form of ¢'.

Now, let ¢=([¢;],-..,[¢.]), where [c,] denotes the smallest integer not less
than ¢, and consider the following primal-dual pair of LPs:

(P") min ¢&'x
st. Ax=b,
x=0

(D) max by
st. AT+z=¢
z=0.

Using the properties of representation height and following the proofs given for
rational problems by Schrijver [18], one can prove the following sensitivity results.

Proposition 4.1. Let (7, Z) be an optimal solution to (D) and let A= A(A, b, ¢). Then,
|Z]lo=mAP*". O

The proof of Proposition 4.1, which is independent of the numerical properties
of the coefficients of (D’), is essentially the same as that given in [18, Lemma A,
expression (29), pp. 195-196].

Proposition 4.2. Let (7, Z) be an optimal solution to (D'), and suppose that (D) has
an optimal solution. Let A = A(A, b, ). Then there exists an optimal solution ( y*, z%)
to (D) such that:

(@) |y* = Fllo<mar.

(ii) z¥>0, where k = arg max{Z;}.

Proof. (i) Let 8 be an upper bound on the absolute value of each entry of B™",
where B is any nonsingular submatrix of A. Then it can be shown (cf. [18, Theorem
10.5, p. 126]) that there exists an optimal solution y* to (D) such that

19 = Fllw= mdlic = [¢]]low< m8.

By Cramer’s rule, if B is a nonsingular submatrix of A then each entry of B™'is a
ratio of subdeterminants of A. But since the entries of A belong to W, Proposition
3.2 gives us the bound § < AA”7"' = A”. Hence we have ||y* — 7|l < mA?, as desired.
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(ii) Let k=arg max;{(c] —A"7);}, and let y* be the solution to (D) from (i).
Then, letting A}. denote the kth row of A™ and using statement (i) and Proposition
4.1, we have

ALy* < AL T (AL DU y* = Fllo) <AL T+ A(mAT)
<c-md4" '+ A(maPY <,

which completes the proof. [

Next, we give a nondegeneracy result that is key in proving that a feasible solution
to a linear program can be found in time independent of the size of the right-hand
side (cf. [18, Lemma B]).

Proposition 4.3. Let A be an m X n matrix of rank m, all of whose entries belong to
V,. Let f=((A7+1), (A" + 1°,...,(47+1)")T, where A = A(A). Then every basic
solution of the system Ax = Af is nondegenerate (i.e., for every m X m nonsingular
submatrix B of A, the vector B~' Af has no zero components).

Proof. By Cramer’s rule, it suffices to prove that if M is any m X (m —1) submatrix
of A with rank m~1, then the matrix formed by adjoining Af to M, namely
[Mc: Af], is nonsingular. Proceeding along these lines, we use the definition of f
and a well-known expansion for determinants to write

det[M : Af]= Y (A7+1)" det A,

k=1

where Auy =[M - A..]Jand A, denotes the kth column of A. Let I be largest index
for which det A, # 0. (Such an index must exist since rank (A) = m.) By Proposition
3.3, if det A, # 0 then A'7P<|det(A )< A. In particular,

(A7 +1)'|det(Ay))| = (47 + 1) (A7),

But,

-1
kgl (A”+ 1) |det(A))|

It P4+1)! (A7 +
<Y (ar+ryas g AED S(ATHD
k=

41—
1 17 <(A4%7+1)YA""

Hence, det[ M - Af] :Z;ﬂ (AP +1)* det Ay # 0, which completes the proof. [

By following the Tardos scheme as presented in [18, Section 15.2], one can easily
(though admittedly rather tediously) verify that Propositions 4.1 through 4.3 contain
all the modifications to the proofs of Tardos’ algorithm necessary for the switch
from rationals to V,,.



L Adler, P.A. Beling / Polynomial algorithms for LP over a subring 139

Theorem 4.1. Let 8= L(A) be given. Then problems (P) and (D) can be solved in
time polynomial in p, n, and 8.

Proof. Note that the effort involved in rounding off the objective and right-hand
side vectors in Tardos’ algorithm depends only on the size of m, n, and A(A) and
not on the size of b or ¢, since these vectors are scaled before rounding. Therefore,
the rounding procedure is polynomial even if b and ¢ are real.

Because we have available the polynomial-time algorithm for LPs with coefficients
in V, developed in Section 3, the result follows by the arguments in [18, Section
15.2] together with Propositions 4.1 through 4.3. [

The next theorem follows immediately from Theorem 4.1 by noting that L(A) is
bounded by a polynomial in the encoding size of the matrix A.

Theorem 4.2. Problems (P) and (D) can be solved in time polynomial in p, n, and the
encoding size of the matrix A. 0O

We are now able to prove the claim, made in Section 2, that LPs with real circulant
coefficient matrices are strongly polynomial.

Proof of Theorem 2.2. By the discussion in Section 2, we have an a priori bound
on the representation size of the coefficient matrix, namely L(nA*A)=2n logn.
Proof of the theorem follows directly from this bound and Theorem 4.1. [J

5. LP in quadratic field extensions

In this section, we use our earlier results to obtain complexity bounds for linear
programs in which the coefficients are integer linear combinations of integer square
roots. In particular, we consider LPs whose coefficients belong to Z(d,, ..., dy),
where we define Z(d,, ..., dy) to be the additive and multiplicative ring generated
by 1,Vd,,...,Vdg; thatis, Z(d,, ..., d;) consists of all numbers that have the form
Y a,(vd)(Vd,)> - - - (Vdi)’*, where g; is an integer and the summation runs over
all (distinct) k-tuples J; = (j,, ..., i) with elements that are either 0 or 1. Because
we are interested in linear programs with real coefficients, we shall assume that the
d; are positive.

Our strategy is to find an integer g such that the set Z(d,, ..., d;) is embedded
in the set W,. Using this result, we bound the representation height of ae
Z(d,, ..., dy) withrespect to W, by a function of the coefficients in the representation
of a in terms of the cross products of the v/d;. We then apply the results of Sections
3 and 4, which bound the complexity of a LP by a function of its representation size.

We begin by stating a key result due originally to Gauss. Proof can be found in
many advanced texts on number theory (see, e.g., [8]).
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Proposition 5.1. Let p be an odd prime and let » =¢>™'”. Then,
P {\/; if p=1mod 4,
w =
ivp ifp=3mod4. [

vl

j=0

We use Proposition 5.1 to characterize the square root of any prime number in
terms of the roots of unity.

Proposition 5.2. Let p be a prime. Then W,, contains +/p. Moreover S4p(\/1_)) sp.

Proof. There are three cases to consider.
 Case 1: p=1mod4. Using Proposition 5.1, we have vp=YI_ e =
ZP 1 g2mi4s /4pe W

Case 2: p=3 mod 4. Again using Proposition 5.1, we have (—i)ivp=
e—ﬂi/z Zf:_(; eZwi4j2/4p:Zf (; 2mi(452 —p)/‘lpe W .

Case 3: p=2. It is easy to verify that el“‘/8+ e?™7/% = /2. It is clear from the above
expansions that S,,(vp)<p in all three cases. [J

Note that if p=1mod 4 then, by Proposition 5.1, vp also belongs to the smaller
set W,. For simplicity we avoid distinguishing this case further.

To make full use of Proposition 5.2, we need the following simple observation.
Proposition 5.3. Let n and k be positive integers. Then W, contains W,

Proof. By definition W, contains w’=e>™"V/ " =¢?"//k for all j=0,...,k—1.
Because W, is a ring it also contains all integer linear combmatlons of the wj. But
this last set is just W,. O

Next, we use Propositions 5.2 and 5.3 to characterize an embedding of Z(d) =
{a|la=a+bVd;a,beZ} for d not necessarily prime.

Proposition 5.4. Let d be a positive integer. Then W,, contains Z(d). Moreover

Su(Vd)=d.

Proof. By the prime factorization theorem for integers (see, e.g., [8]) we know that
d =a’p, - - - p. for some positive integer a and primes p,, ..., px. Because 4d is an
integer multiple of 4p;, we know by Proposition 5.3 that W,, contains W,, . Hence
by Proposition 5.2, W,, also contains \/E for all j=1,..., k The statement that
W,4 contains Z(d) follows trivially from this last result and the fact that W, is a
ring. Now, by Proposition 5.3, we have S4pj(\/-p;)spj. But by the definition of
representation height, the relation W,, < W,, implies that Sua(Vp) < S4pj(\/—p7).
Hence, we can write

S4d(\/—‘7) = Sya(v ‘12171 “ D)
< S4a(a@)Ssa(Vpy) -+ - Saa(Vp)<a’p, - p<d,

which completes the proof of the proposition. O
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Making an easy generalization of Proposition 5.4, we next characterize an embed-
ding of the ring generated by a number of square roots.

Proposition 5.5. Let d,, ..., d, be positive integers and let d =Hj’.(:1 d;. Then, Wy,
contains Z(d,, ..., d).

Proof. Since 4d is an integer multiple of 4d;, it follows from Propositions 5.3 and
5.4 that W,, contains Z(d;), for all j=1,..., k. But W,, is closed under addition
and multiplication and so also must contain Z(d,,...,d:). O

Proposition 5.6. Let d,,...,d, be positive integers and let d :H;;l d.. Let ae
Z(d,,...,dy) have the representation a =Y, a,(v'd))(Vd,)” - - - (Vdy)’, where a; is
an integer and the summation runs over all (distinct) k-tuples J; = (jy,...,jx) with
elements that are either 0 or 1. Then, Sy (a)<d ¥ |aj.

Proof. By the properties of representation height, we have
Ssala) =S4 aj(\[‘Tl)j'(\/—d_z)jz o (Vi)
<Y [aj[Satd(\/d_l)j‘S‘td(\/CTz)jz < SV
But the relation W,, = W,, implies that S4d(\/7d—j)sS4d,_(x/—d_j)<dj, where the last

inequality follows from Proposition 5.4. Thus we have S4d(a)sd2|aj|, as
desired. OO

We now use these results to bound the complexity of LPs whose coefficients
belong to Z(d,, ..., d;). As in Sections 3 and 4, we assume that we have a machine
that can perform arithmetic operations on real numbers in constant time per
operation, and that the machine has available \/d_j for all j, or that it can calculate
these numbers. We also assume that every number a € Z(d,, ..., d;) in a problem
instance is encoded for input as a set of 2" integers that are the coefficients in the
representation of a in terms of the cross products of the \/7, . We define the encoding
size of a to be the sum of the binary encoding sizes of these coeflicients, and we
define the encoding size of a matrix to be the sum of the encoding sizes of its entries.

Theorem 5.1. Let (P) be the standard form LP defined at the beginning of section 3.
Suppose that all the coefficients in (P) belong to Z(d,, ..., dy) for positive integers
di,...,d,withd =H}’;1 d;. Then (P) can be solved in time polynomial in n, d, and
the encoding size of the matrix A.

Proof. Using Proposition 5.6, it is easy to show that L(A) is bounded by a polynomial
in log d and the encoding size of the matrix A. Proof of the theorem then follows
from Theorem 4.1. O

If d is fixed, Theorem 5.1 implies that (P) can be solved in time polynomial in
the problem dimension and encoding size. We improve these results in a sequel
paper [1], obtaining a bound which, although exponential in k, is polynomial in
the bit size of d and the problem encoding size.
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6. Remarks

In light of the results obtained here on the complexity of LPs with coefficients from
W,, it may be worth investigating what interesting classes of real numbers can be
embedded in W,. It is well-known that every finite Abelian extension of the rationals
can be embedded in the extension of the rationals by the pth root of unity, for some
p (see, e.g., [8]). Therefore, there may be other classes of LPs whose complexity
can be bounded in the manner developed in Section 5 for LPs with coefficients from
a square-root extension of the integers.

More ambitiously, one may ask if it is possible to obtain complexity results for
other classes of algebraic numbers without first embedding the numbers in W,.
Recently, by using some additional material from number theory in conjunction
with an approach similar to that of Sections 3 and 4, we have obtained such results
for all algebraic numbers [1].

In some sense, our approach in this paper has been to encode a set of algebraic
numbers as integers for input to a machine that performs real arithmetic. It is natural
to ask whether the requirement for real arithmetic can be relaxed to the point where
all computations are performed symbolically, using integer arithmetic only. In fact
this can be done both here and in the more general context of an algorithm for all
algebraic numbers. A report on this topic is under preparation [2].

In light of the results in [1], which extend the linear programming results given
here to general algebraic numbers, it is worth investigating whether other classes
of problems can be shown to be strongly polynomial by arguments similar to those
used for circulant LPs. Equivalently, we can ask whether there are other simul-
taneously diagonalizable families of matrices whose diagonalizing matrix is com-
posed of algebraic numbers (not necessarily from the subring W, ) that are small in
the appropriate sense. Indeed, it appears that such families do exist and that
considerable progress in identifying them can be made by using results from the
theory of group representations. We plan to report on this topicin a subsequent paper.
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