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We show that a modified variant of  the interior point method can solve linear programs (LPs) whose 
coefficients are real numbers  from a subring of  the algebraic integers. By defining the encoding size of  
such numbers  to be the bit size of  the integers that  represent them in the subring, we prove the modified 
algorithm runs in time polynomial in the encoding size of  the input coefficients, the dimension of the 
problem, and the order of  the subring. We then extend the Tardos scheme to our case, obtaining a 
running time which is independent  of  the objective and right-hand side data. As a consequence of  these 
results, we are able to show that LPs with real circulant coefficient matrices can be solved in strongly 
polynomial  time. Finally, we show how the algorithm can be applied to LPs whose coefficients belong 
to the extension of the integers by a fixed set of  square roots. 
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I. Introduction 

The question of whether a linear programming problem can be solved in polynomial 
time was answered in a landmark paper by Khachiyan in 1979. In fact, both 
Khachiyan's ellipsoid method [10] and Karmarkar's interior point method [9] solve 
linear programs (LPs) with rational coefficients in time that is polynomial in the 
number of input coefficients and the total number of bits in a binary encoding of 
the problem data. Nevertheless, several interesting questions concerning the com- 
plexity of linear programming remain open. One of the main open questions is 
usually stated as: Is there a strongly polynomial algorithm for linear programming? 
Following standard usage (cf. [19]), we say an algorithm for linear programming 
is strongly polynomial if: 

(S1) it consists of the elementary operations addition, subtraction, multiplication, 
division, and comparison; 

($2) the total number of elementary operations performed by the algorithm is 
polynomial in the number of input items (i.e., the number of coefficients in the 
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matrices and vectors that define the linear program); and 
($3) when applied to a rational instance, the (binary encoding) size of the numbers 

that occur during the course of  the algorithm is bounded by a polynomial in the 
size and total number of input items. 

The conditional nature of ($3) stems from differences between rational-number 
and real-number models of computation. The standard model of computation for 
rational numbers is derived from the Turing machine. Consequently, the time 
required to perform an elementary arithmetic operation (S1) depends on the bit 
size of the operands. Requirement ($3) ensures that the time the algorithm spends 
performing any intermediate calculation is polynomial in the input size. In the case 
of  real numbers, linear programming is usually modeled in terms of a machine that 
can perform any of  the elementary operations (S1) in constant time, regardless of 
the nature of  the operands. (See [4] for a rigorous treatment of general computation 
with real numbers.) 

Taking advantage of the dichotomy implied by ($3), we can split the question of 
the existence of a strongly polynomial algorithm into two easier questions: 

(A) If  the data is rational, does there exist an algorithm satisfying (S1), ($2), 
and ($3)? 

(B) If  the data is real, does there exist an algorithm satisfying (S1) and ($2)? 

To date, efforts to find a strongly polynomial algorithm for linear programming 
follow one of two main approaches, distinguished by whether they are directed at 
question (A) or at question (B). Those efforts directed at question (A) involve 
modifying existing polynomial-time algorithms, such as the ellipsoid method or 
variants of the interior point algorithm, so that their running times become indepen- 
dent of the size of  at least part of  the input data. In a key result along these lines, 
Tardos [19] showed that a LP can be solved in time that is independent of the size 
of  the data in the objective and right-hand side vectors. As a consequence, LPs in 
which the coefficient matrix has "small" rational entries, such as those that arise 
frequently in combinatorial optimization, can be solved in strongly polynomial time. 
Recently, Norton, Plotkin, and Tardos [16] extended Tardos'  results by giving an 
algorithm whose running time is independent of the size of the data in a fixed 
number of rows or columns of the coefficient matrix. 

Before discussing work directed at question (B), we mention some issues concern- 
ing the existing polynomial algorithms for rational LPs. Both the ellipsoid and 
interior point methods depend in a fundamental way on upper and lower bounds 
on the magnitude of certain numbers related to basic solutions of  the LP. These 
bounds allow the algorithms to be properly initiated and terminated, and are 
themselves part of the theoretical complexity of the algorithms. If  the problem is 
rational, the bounds are a function of the bit size of the problem data and can be 
computed in polynomial time. If  the problem is not rational, it is still possible to 
compute the necessary upper bounds in polynomial time, but no polynomial method 
for computing the lower bounds is known [13]. 
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The second approach toward finding a strongly polynomial  algorithm for linear 
programming focuses on answering question (B) for special classes of  LPs. Consider- 
ing the discussion above, it is not surprising that these efforts generally involve the 
construction of algorithms that are greatly different from the existing polynomial  
algorithms for rational data. The work of Megiddo provides important  examples of  

this second approach;  in [ 11] a strongly polynomial  algorithm is given for feasibility 
problems in which at most two variables appear  in each inequality, and in [12] a 
strongly polynomial  algorithm is given for problems in which the number  of  variables 
is fixed. Interestingly, the combination of the ideas in this latter algorithm with 
those in [19] led to the algorithm in [16]. 

In this paper,  we show that linear programs whose coefficient matrices are circulant 
can be solved in strongly polynomial  time. (LPs of this kind are related to discrete 
convolution and arise frequently in image processing.) In proving this result we are 
led to an analysis of polynomial-t ime algorithms for linear programming in a subring 
of the algebraic integers. Specifically, we show that a variant of  the interior point 
method can solve LPs whose coefficients are real members  of  the set 

Wp = a :  a = ~ ajw'; aj integer , 
j = O  

where ~o = e 2~'i/p is the first primitive pth root of unity. (We lose no generality by 
p - - I  " 

working with the subring Wp instead of the subfield ~ p = { y :  Y=~2j=o q j U ;  qj 
rational V j}.) The restriction to Wp allows us to define the '°encoding size" of  the 
input number  a to be the bit size of  the integers ao,. . . ,  ap-.1 in the representation 

p - - 1  ' 

= Zj~0 aj °~J. 
The key to our construction is our ability to obtain "reasonable"  upper  and lower 

bounds on certain quantities involving the basic solutions of the LP. These bounds 

are a function of p (the order of the subring in which we work) and the encoding 
size of the data. We use these bounds to show that the modified algorithm's running 
time is polynomial  in the dimension of the LP, the order p of  the subring, and the 
encoding size of the data. We then proceed to modify the scheme given by Tardos 
[19] for rational data so that it works with data from Wp. The modified Tardos 

scheme gives us an algorithm whose running time is independent of  the encoding 
size of the objective and right-hand side data (in fact, the objective and right-hand 
side vectors are allowed to be arbitrary real numbers).  

Finally, we show that the numbers belonging to the extension of the integers by 
a set of positive integer square roots are embedded in Wp, for some known p. Using 
our earlier results, we then obtain an algorithm to solve LPs with such coefficients 
in time that is polynomial  in the problem dimension, the encoding size of  the input 

data, and the product  of  all the square roots. 
The paper  is organized in the following manner: In Section 2, we discuss circulant 

matrices and show that LPs with a circulant coefficient matrix can be polynomially 
t ransformed into an equivalent LP in which the entries of  the coefficient matrix are 
small in magnitude and belong to W,, where n is the dimension of the matrix. We 
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also show that if the original data is rational then these entries are integers. In this 

case, the Tardos scheme [19] gives us a strongly polynomial  algorithm directly. In 
Section 3, we analyze general LPs whose coefficients belong to Wp. In particular, 
we modify a variant of  the interior point algorithm to solve these problems in 

polynomial  time. In Section 4, we use the results of  Section 3 and the scheme in 
[19] to obtain an algorithm that runs in time independent of  the encoding size of  

the objective and right-hand side data. In Section 5, we show how our results can 
be applied to LPs whose coefficients belong to an extension of the integers by a set 
of  square roots. Finally, in Section 6, we conclude with some remarks. 

2. Linear programming with circulant matrices 

In this section we bound the complexity of  linear programs whose coefficient matrices 
are circulant. 

Definition. The n x n matrix A (possibly with complex entries) is said to be circulant 
if and only if it has the following form: 

[ aO al "'" an-2 an-l] 
an- 1 a o  " " " a n - 3  an-2 

A ~  . . " . 

al a2 "'" an-i ao J 
Given a vector a T= (a0 . . . . .  an-0 ,  we shall use circ (a) to denote the circulant 
matrix defined above• ( I f  M is a matrix or vector, we use M T to denote the transpose 
of M.) 

Circulant matrices are closely related to the vector operation of discrete convol- 
ution; the discrete convolution of  the n-vectors a and b is defined to be the n-vector 
circ(a)Tb. Discrete convolution appears in a variety of  physical models, particularly 
in the area of  signal processing• Our interest in convolution and circulant matrices 

developed as part  of  computational  work in tomography of the Earth, an area which 
shares with signal processing the inverse imaging problem of  reconstructing a true 
signal from an observed but distorted one. Below, we give a simplistic account of 
a problem in inverse imaging and show how linear programs with circulant coefficient 

matrices arise in this context. 
A discrete approximation to the spectrum of  a light source can be obtained by 

passing light from the source through a spectrometer and measuring its intensity at 
each of a discrete set of  wavelengths. Because spectrometers have finite resolution, 
the intensity recorded at any particular wavelength is usually contaminated by the 
intensity of  the source at neighboring wavelengths; thus, the observed spectrum is 
a somewhat " smeared"  version of the true one. This distortion can be modeled 
using convolution and the characteristics of  the spectrometer and the source. 
Specifically, if the n-vector x contains the true intensity of  the source at n equally- 

spaced wavelengths and the vector b represents the intensity actually observed at 
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those wavelengths, a reasonable model of  the distortion phenomenon is given by 
b = circ(a)Yx. The vector a is derived from known characteristics of  the spectrometer.  

A common problem in this context is the reconstruction of the true spectrum 
from a set of  observed intensities. Under  the above model, this task is equivalent 
to solving the equation circ(a)Tx -- b for the unknown x. It is often the case, however, 

that any one of a number  of  true spectra could lead to the observed data, implying 
circ(a) is singular and the distortion equation has no unique solution• In this case, 
instead of a unique solution, one usually looks for a physically valid solution that 
minimizes a linear functional with some interesting interpretation. As a simple 
example, one may desire the nonnegative spectrum with the smallest intensity in 

the j th  wavelength that is consistent with the observed spectrum. The desired 
spectrum, of  course, is the solution to the linear program {min efxlcirc(a)Vx = b, 
x/> 0}, where ej is the j th  unit vector. 

This last problem belongs to the class of  LPs we analyze in this section. Specifically, 
we consider the following standard-form problem: 

(P) min cTx 

s.t. Ax  = b, 

X > ~ 0 ,  

where a, b, c, x c R" and A = circ(a). 
To analyze (P), we need to develop a number  of  the properties of  circulant 

matrices. We begin along these lines by defining a matrix with the interesting property 
that it diagonalizes every circulant matrix. 

Definition. Let to be the first primitive nth root of  unity; that is, 

t o  = e 2 " r r i / n ,  

where i = x/s-i . Then we define the n × n matrix Fn to be 

11  n 2 - 
= t o  • . . t o  t o  

F n  . . • 

n - I  2 (1)1 ] to . . .  to 

In general, the jk th  component  of  Fn is to(J ~)(k 1). 
The matrix Fn is usually called the nth order Fourier matrix, the label Fourier 

coming from the fact that the product F.a can be used to define a discrete Fourier 
transform of the n-vector a. By using the identity to-J = toJ moa. and by manipulat ing 
geometric series, it is easy to show that ~-f/n F. is unitary; that is, F21 = ( 1 / n ) F * ,  
where F* denotes the Hermitian transpose of Fn (the jk th  component  of  F*  is 
to(1-j)(k-l)). In an effort to keep notation simple, we omit the index n on F,  when 

the size of  the Fourier matrix is clear from the context of the discussion. 
We now state several well-known results on circulant matrices. Detailed proofs 

of  these results can be found in [5]. 
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Proposition 2.1. (i) Let A = circ(a) be an n x n circulant matrix. Then the columns o f  

the nth order Fourier matrix F are eigenvectors o f  A and the entries o f  the n-vector 

Fa are the corresponding eigenvalues. 

(ii) A is an n x n circulant matrix if, and only if, A = ( 1 / n ) F G F *  for some n x n 

diagonal matrix G. [] 

As an easy corollary, we have the following useful fact: 

Corollary 2.1. Let A and B be circulant matrices o f  the same order. Then A B  = BA. [] 

Proposition 2.1 can also be used to show that the class of circulant matrices is 
closed under the operations of  addition, multiplication, (Hermitian) transposition, 
inversion, and pseudoinversion. This last operation, which is formally defined below, 

will be of  fundamental  importance when we turn to linear programming. 

Definition. Given a matrix M, we use the term pseudoinverse of M to denote the 
unique matrix M + that satisfies 

(i) M M + M  = M ;  

(ii) M + M M  + = M+; 
(iii) M M  + = (MM+)*; 
(iv) M + M  = ( M + M )  *. 

(Some authors refer to M + as the generalized inverse or the Penrose-Moore  
inverse of  M).  

It is particularly easy to express the pseudoinverse of a circulant matrix in terms 
of the Fourier diagonalization given in Proposition 2.1. 

Proposition 2.2. Let  G be an n x n diagonal matrix and let A = ( 1 / n ) F G F * .  Then, 

the pseudoinverse o f  A is given by A + = (1/ n ) F G + F  *, where G + is an n x n diagonal 

matrix with entries 

otherwise. [] 

It follows from Proposition 2.2 and part  (ii) of  Proposition 2.1 that the matrix A 

is circulant if and only if its pseudoinverse is circulant. 
As the next result shows, it is easy to compute the pseudoinverse inverse of  a 

circulant matrix. 

Proposition 2.3. Let A be a given n × n circulant matrix. Then it is possible to compute 

A + f rom A using only Gaussian elimination and a constant number o f  matrix multiplica- 

tions, each o f  order n. 
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Proof. Consider the system A 3 X  = A,  where X is an n x n matrix of unknowns. 
This system has at least one solution, namely (A+) 2. To see this, note that since A 
and A + are both circulant they commute by Corollary 2.1, and so 

A3(A+): = A A + A A + A  = A A + A  = A,  

by property (i) of the pseudoinverse. Thus we can find a particular solution X to 
A 3 X  = A by Gaussian elimination. Now, 

(A+)ZA32 = (A+)2A. 

Hence, 

A.X = A +, 

which completes the proof. [] 

We turn now to an analysis of the linear program (P). Our strategy for establishing 
the strongly polynomial-time solvability of (P) is centered around a problem transfor- 
mation. Briefly, we transform the given problem into an equivalent problem in which 
most of the information in the coefficient matrix has been "pushed"  to the right-hand 
side. We then show that the transformed problem can be solved in time independent 
of its right-hand side. 

We begin with a simple observation that will be of use in transforming (P) into 
an equivalent but more transparent problem. 

Proposition 2.4. L e t  M ~ C r×s, g ~ C r, V ~ C s, and suppose that the system M y  = g has 

a solution. Then, { v l M v  = g} = { v [ M + M v  = M+g}.  

Proof. The proof  follows easily from the observation that the null space of M is 
the same as the null space of M + M  by property (i) of the pseudoinverse. [] 

It follows from the last proposition that if A x  = b is consistent then (P) is equivalent 
to the following problem: 

(P') min cTx 

s.t. n A + A x  = hA+b, 

x>~O. 

An interesting aspect of this transformation is that the entries of hA+A,  the 
coefficient matrix of (P'), have a particularly simple and useful representation in 
terms of the nth roots of unity. This representation is the subject of the next 
proposition. 
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Proposition 2.5. Let A be an n × n circulant matrix. Then each entry ~ of  the matrix 
nA+A can be written in the form 

n-1 
~ ~" ~ djogJ~ 

j=o  

where to = e 2=i/" and where ~ is either 0 or 1. 

Proof. By Propositions 2.1 and 2.2, we can write 

A+A = {( 1 / n) FG+F*}{(1/n)FGF*} 

for some n x n diagonal matrix G. Using the identity ( 1 I n ) F ' F =  I, we then have 

nA + A = FDF*, 

where D is a diagonal matrix with ones and zeros in positions on the diagonal that 
correspond to the positions of  the nonzero and zero elements of G, respectively. 

Proof of the statement follows easily from this expression by using the definitions 
of  F and F* and the identity ogJ = ogJ mod n [] 

We shall use the representation given in Proposition 2.5 to show that the entries 

in the coefficient matrix of problem (P') are nice in some sense. Toward this end, 

it is useful to view these entries in terms of a standard notion from algebraic number 
theory, which we discuss next. 

Definition. A complex number a is called an algebraic integer if there exists integers 

do . . . .  , dk-1 such that ak+dk  lo~ k 1 + . . .  + d 0 = 0 .  

Note that because it satisfies the polynomial equation o9"-1 =0 ,  the number 
to = e 2 ~ i / n  is an algebraic integer by the above definition. 

Proposition 2.6. The set of  algebraic integers is closed under addition, multiplication, 

and negation. [] 

Since w is an algebraic integer, Proposition 2.6 implies that if a has the form 

a = ~j"-o l djw j, where dj is integer, then a is an algebraic integer. 

Next, we present a standard result from number theory that will be of  key 

importance when we derive complexity bounds for rational instances of (P). 

Proposition 2.7. An algebraic integer is rational if  and only if  it is an integer. [] 

Proofs of Propositions 2.6 and 2.7 can be found in most texts on algebraic number 

theory (see, e.g., [8]). 
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If  the coefficient matrix A in (P) is rational we can use Propositions 2.6 and 2.7 
to make a strong statement about the form of the entries in nA+A, the coefficient 
matrix of (P'): 

Proposition 2.8. I r A  is an n x n circulant matrix  with rational entries, then the entries 

o f  nA+A are all integers. 

Proof. It follows immediately from Propositions 2.5 and 2.6 that each entry of  nA+A 

is an algebraic integer. But since each entry of A is rational, we see by Proposition 
2.3 that each entry of A +, and hence each entry of nA+A,  is also rational. Proof  of 
the proposition follows by noting that since each entry of nA+A is both a rational 
number and an algebraic integer, it must be an integer by Proposition 2.7. [] 

Armed with the above results, we can easily bound the complexity of rational 
instances of (P): 

Theorem 2.1. Suppose that A is an n x n circulant matrix  and that the entries o f  A ,  b, 

and c are rational. Then (P) can be solved in strongly polynomial  time. 

Proof. As a preprocessing step in the solution of (P), one can use Gaussian elimina- 
tion to check the consistency of A x  = b. If  A x  = b is inconsistent, then obviously 
(P) is infeasible and no further work is required. If A x  = b is consistent, then by 
Proposition 2.3 one can convert (P) into the equivalent problem (P') using Gaussian 
elimination and matrix multiplication. In either case the dominant computational 
work is Gaussian elimination, which is a strongly polynomial operation (see [6]). 

In Proposition 2.5 we established that every entry ~ in the coefficient matrix 
n A + a  has the form a =~7~0 ~ djto j ,  where  dj is either 0 or 1. Since [(.oJl "~-1 for all j, 
we see that I~[<~ n. But because we assume that A is rational, a must be an integer 
by proposition 2.8. Thus, the coefficient matrix of (P') contains integers of absolute 
value at most n. Moreover, the right-hand side and objective vectors of (P') contain 
only rational numbers, since by Proposition 2.3 we can construct (P') from (P) using 
only Gaussian elimination and matrix multiplication. 

Tardos [19] showed that LPs of the form (P') with rational coefficients can be 
solved in time polynomial in the problem dimension and the binary encoding size 
of  the numbers in the coefficient matrix. By the above arguments, the binary encoding 
size of nA+A is bounded by a polynomial in the dimension of (P'). Hence, (P'), 
and therefore (P), can be solved in strongly polynomial time. [] 

For the purpose of analyzing LPs with circulant coefficient matrices and real 
coefficients (including those in the objective and right-hand side), we adopt a model 
of computation that allows constant time addition, subtraction, multiplication, 
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division, and comparison of real numbers. Under  this model we have the following 

result: 

Theorem 2.2. Suppose that A is an n x n circulant matrix and that the entries of  A, b, 

and c are real numbers. Then (P) can be solved in strongly polynomial time. 

To prove Theorem 2.2 we need a number  of  new results concerning the numbers 
in nA+A. These results, which we shall obtain in Sections 3 and 4, lead in a natural 
way to an analysis of  linear programming in a subring of the algebraic integers. 
The proof  of  Theorem 2.2 follows directly from this analysis and is given at the end 
of  Section 4. 

3. LP over a subring of  the algebraic integers 

We consider the following pr imal-dual  pair of  LPs: 

(P) min cTx 

s.t. Ax  = b, 

X~>0, 

(D) max bVy 

s.t. A Ty + z = e, 

z~>0, 

where A c ~m×n, b c •", and e, x ~ ~n. Throughout this section we assume that all 

entries of  A, b, and c are real and belong to the following set: 

W~= ~ : ~ =  ~ a / o J ; a j e ; ~ W  , 
j~0 

where w = e 2"i/p and where 7/ denotes the integers. We shall use Vp to denote the 
set of  all real members  of  Wp ; that is, Vp = Wp ~ N. 

Note that, because wJ=w jm°dp, the set Wp forms a subring of the complex 
numbers (i.e., Wp is closed under addition, multiplication, and negation). 

It is also important  to note that we lose no generality by working with the set Wp 

instead of the larger set S2p = {Y lY  = ~ j ~  q/M; qj rational Vj}. It is well known from 

number  theory that g2p is precisely the subfield Fp = {y[ y = a/ f l ;  fl ~ 0; c~, fl c Wp}. 
Hence, by multiplying through by a common denominator  we can transform any 
LP whose coefficients belong to Fp (--~2p) into an equivalent problem whose 
coefficients all belong to Wp. 

We now develop some properties of  Wp that will prove useful in the analysis of  
linear programming to follow. We begin by giving explicit expressions for the 
addition and multiplication of members  of  Wp. 
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p 1 " p--1 Proposition 3.1. Let a =Es=o as~°J and/3 = ~ j = o  bs°)J, where a s and b s are integers for 
all j, and let a T = ( a o , . . . ,  ap-l) and b T= ( bo, . . . , bp-l). Then: 

(i) I f  y = a +/3, then T =~P-~ ci °)s, where c = ( c o , . . . ,  cp-l) T =  a +  b. 
v- t  ~ ) 

(ii) I f  y = a/3, then e=Ej=o c:oo , where c = ( C o , . . . ,  cp-l)V=circ(a)Tb. 

Proof .  S ta tement  (i) is obvious.  S ta tement  (ii) fol lows directly f rom the fact  that  
O) j = ¢.oj rood p. [ ]  

Our  immedia te  goal  is to establish uppe r  and  lower  bounds  on certain funct ions  
of  a ~ Wp. To obta in  these bounds ,  we need a measure  of  the magn i tude  o f  the 

p- - I  
coefficients a 0 , . . . ,  ap 1 in the representa t ion  a =Y~s=o asw:. This representa t ion ,  

p-- I  
however ,  is not  unique  for  general  p, since ~s=o m s = 0 for  p > 1. The ques t ion  of  
uniqueness  of  representa t ion  mot ivates  us to measure  the magni tude  of  the rep-  
resentat ion of  a in the fol lowing manner :  

Definition. Given  a c Wp, we define the representation height of  a with respect  to 
Wp to be: 

Sp(a)  = min  ]asl: a = Y~ aso)s; a s c Z Vj , 
j j = O  

where  ~o = e  2~/p. We include the index p on Sp(a)  only when  there is danger  of  
confus ion  regarding the set Wp with respect  to which  the representa t ion  height  o f  
a is to be taken.  (Represen ta t ion  height  should not  be confused  with any of  the 
var ious  not ions of  height  encountered  in n u m b e r  theory.)  

Next ,  we state the main  algebraic  and metr ic  proper t ies  of  representa t ion  height.  

Proposition 3.2. Let a,/3 ~ Wp. Then: 
(i) S( aa + b/3 ) <~ la]S( a ) + lblS(/3 ) for  any integers a and b. 

(ii) S(a/3)<~ S (a )S ( /3 ) .  
(iii) lal<~ S(a). 
(iv) I f a  ~ 0 ,  [ a l~>(S(a ) )  ' -p .  

Proof.  (i) This s ta tement  follows directly f rom the definit ion of  the funct ion S and  

par t  (ii) of  Propos i t ion  3.1. 
(ii) Define vectors  a, bET/p such that  S ( a ) =  [lalll, a =Y~.~  ajw j, S ( /3)= Ilblll, 

p--1 
and /3 = ~ j = o  bJ °Jj. (By the definit ion of  S such vectors  mus t  exist.) Let Y = a/3. 

p--1 
Then,  by par t  (ii) of  Proposi t ion  3.1, we have T=Y~j=oCsWJ, where  c =  
(co . . . .  , ep_~) T = circ(a)Tb. Hence ,  

S(T)  ~< Ilclll = [[circ(a)Tb [[1 ~< [[circ(a)ll,II b II, = Ila[[,llbll, = s ( a ) s ( / 3 ) .  

p--1 
(iii) Let a c Z  p such that  a=~s=oasWJ.  Then  we have  [ a [= [~_ -~aswS[~  < 

p--1 p- - I  
~:=o lasllt°Jl = ~:~o laJ]~ S ( a ) ,  as desired. 
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(iv) Define a c7/" such that S ( a ) =  [Jail, and a = ~jP-~ a/M. Now consider A =  
circ(a). It follows from part (i) of Proposition 2.1 that A is a normal matrix (i.e., 
AA v= ATA). This fact implies that the eigenvalues of a n  v are Id012, Idll 2 . . . . .  Idp_ll 2, 

where dj = (Fa)j is (again by Proposition 2.1) the j th  eigenvalue of A. Let J =  
{j[d~ # 0}. Then by a standard result of linear algebra (see, e.g., [7]) we have 

H laj[ 2 = sum of all principle minors of a a  v of order IJI, 
j ~ J  

where IJ[ denotes the cardinality of the set J. Because the entries of AA T are all 
integers, this last equality implies I]j~j Idjl z~> 1. Note that the index 1 belongs to J, 
since we assume that a = d, # 0. Now, using the inequality Idkl = I~j~-o ~ ajwJkl<~ 

p--I 
2j=o laj[ : S(a) ,  we have 

I~f ~ ( s (~) )  '-lira> ( s (~) ) '  e, 

which completes the proof  of the proposition. [] 

We shall use Proposition 3.2 to derive several useful results concerning matrices 
and systems of equations whose coefficients belong to W e. These results are most 
easily stated in terms of the quantities introduced below. 

Definition. Let M be an r x s matrix all of  whose entries Mjk belong to Wp. We 
define the representation height of the matrix M to be 

T ( M )  = max{S(Mjk)}. 
j ,k  

Let I denote the rank of M, and let 

A ( M ) = ( I T ( M ) ) ' .  

Then we define the representation size of the matrix M to be 

L(M)  = log(A (M)).  

We use similar notation when discussing linear programs. Let (Q) denote the problem 
{minfYvlMv =g, v >I 0}, where the entries of  M, g, and f all belong to W e. Let gt 
denote the set of all entries in M, g, and f. We define the representation height of 
the linear program (Q) to be 

T(M, g , f )  = max{S(a)}. 

Let l denote the rank of  M, and let 

A (M, g , f )  = (IT(M, g,f)) ' .  

Then we define the representation size of the linear program (Q) to be 

L(M, g , f )  = log(A(M, g, f ) ) .  

We use analogous notation with respect to systems of linear inequalities. Specifically, 
we define the representation height and size of  the system {My = g, v >i O} to be the 
representation height and size of the linear program {rain OvlMv =g,  v/> 0}. We 
write these quantities as T(M, g) and L(M, g). 
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Having fixed notation, we now state some key properties of  matrix determinants. 

Proposition 3.3. Let  B be an r x r nonsingular matrix all o f  whose entries n jk  belong 

to Wp, and let A = A ( B ). Then: 

(i) det(B) c Wp. 

(ii) S(det(B))  ~< A. 
(iii) A I - p ~  < [det(B)[<~ ~. 

Proof. Let J be the set of  all r! permutations of (1, 2 , . . . ,  r) and let j = ( J l , - - .  ,jr) 
be a member of  J. Then, by the definition of the determinant of a matrix, we can write 

det(B) = ~ (±)(BI~, • • • Brj,). 
j cJ  

Statement (i) follows immediately from this expansion and the fact that Wp is closed 
under the operations of addition, multiplication, and negation. Now, taking the 
representation height of both sides of the expansion and using Proposition 3.2 gives 

S(det(B))  = S (  ~j (-F)(Bljl""" Brj~))~ ~ S ( B l j I ) . . . S ( B r j ,  ) 
j j~J 

<<- ~, ( T ( B ) ) r = r ! ( T ( B ) ) r < ~ ( r T ( B ) )  r = A .  
jcJ  

This proves statement (ii). Statement (iii) follows directly from Proposition 3.2 and 
statements (i) and (ii). [] 

As a corollary we have the following result: 

Corollary 3.1. Let  M and g be r × s and r x 1 matrices, respectively, all o f  whose entries 

belong to Wp, and let A = A ( M ,  g). I f  ~ is a basic solution to the system M y  = g, then 

every nonzero component fj o f  ~ satisfies A-P <~ I jl ~ a ' .  

Proof. The statement follows trivially from Cramer's rule and Proposition 3.3. [] 

Using the above results, we can modify almost any variant of the interior point 
method [9] or the ellipsoid method [10] to solve problem (P) in polynomial time. 
In the remaining part of this section, we shall show how to modify the primal-dual  
path following algorithm and its analysis as presented in [14] and [15]. Since most 
of the algorithm and analysis are not affected by the change from rationals to Vp, 

we present only the necessary modifications. 
For the purposes of the complexity analysis, we assume that we have a machine 

that performs addition, subtraction, multiplication, division, and comparison of  real 
numbers in constant time per operation. Implicit in our derivation of the basic 
complexity results is the assumption that, for any instance of  (P), a bound on the 
representation size of the instance is part of the input data. (For our purposes, this 
assumption is essentially equivalent to the requirement that S ( a )  be part of  the 
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input for every coefficient a in the problem instance.) Later, we adopt a more natural 
input scheme and show that the basic complexity results extend easily to this case. 

In the following two propositions, we use the properties of  the set Wp and the 
function S to establish a theoretical stopping point for an interior point algorithm 
applied to (P) and (D). Because the discussion involves systems of inequalities and 

linear programs, we shall assume that the matrices and vectors we encounter are real. 

Proposition 3.4. Let  M and g be r × s and r × 1 matrices, respectively, all o f  whose 

components belong to Vp. Let  0 < t$ <~ A -2p be given, where A = A ( M,  g). Le t  er denote 

the r-vector o f  all ones. Then the open system M v  < g + 6er is feasible i f  and only i f  

the closed system M y  <~ g is feasible. Moreover,  given a solution to one sys tem we can 

f ind  a solution to the other system in time polynomial  in r and s. 

Proof. The proof  is an adaptation of that given by Papadimitriou and Steiglitz [17, 
Lemma 8.7, pp. 173-174] for an analogous result concerning systems with rational 
coefficients. The main difference lies in the use of the properties of representation 
height (Proposition 3.2) to derive lower bounds on integral polynomial  forms 

involving members  of Vp. 

Obviously, any solution to the closed system is also a solution to the open system. 

Conversely, let ~7 be a solution to M y  < g + 8er. We shall show how to construct a 
solution to M y  <~ g. 

Let Mj. denote the j th  row of M, and consider the set of  indices 

J =  {jlgj<~ Mj.~ < gj + ~}. 

We may assume that, for all k, Mk. =~j~j,/3kjMj. for some linearly independent  
subset Jm of J, since otherwise we can increase the cardinality of J by solving a 
corresponding Gale system (cf. [17]). 

By Cramer 's  rule and Proposition 3.3, the coefficient /3kj can be written in the 
form [3kj= ~/kj/]qb[, where y, d~c Wp and S(T)~< A and S(~b)~< A. 

Now, let ~ be a solution to the equations Mj. v- -g j ,  for j ~ J1. Then, for k ~ J1, 
we have 

[qb](Mk.~--gk) = ~ TkjMj.~--[qSlgk 
jEJI 

= Y, rkjgj--ld~Igk (*) 
jEJI 

J~JI 

< ~ ( s + l ) ~  

~< A2o p). 
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But by taking representation heights of equality (*) we have 

z ( ; 
J~J! J I 

From this last inequality and Proposition 3.2, we see that [Ch](Mk.V--gk)>1 AZO-P) 

if and only if [&[(Mk.~--gk)> 0. But since we also have 14~[(Mk. ~- -gk)<  A2~'-P), it 
must be that I~bl(Mk.~--gk)<~O. Hence (Mk.~--gk)<~O, and we see that ~ is the 
desired solution to My <~ g. Proof of the proposition follows by noting that we can 
construct ~ in time polynomial in r and s using Gaussian elimination. [] 

Proposition 3.5. Let the primal-dual pair (P) and (D) be given and let all the entries 

in A, b, and c belong to Vp. Assume we have a point # = 0 ~, 35, if) feasible to (P) and 
(D) that satisfies ) 2 T ~  < (6hA) -24p, where A = A(A,  b, c), Then from ~, we can find a 
point w* = (x*, y*, z*) in no more than O(n 3) arithmetic operations, such that x* is 
optimal to (P) and y* and z* are optimal to (D). 

Proof. The proof  is essentially the same as that given for the rational case in [15, 
Proposition 4.2], provided Proposition 3.4 is used in place of the analogous result 
employed there. [] 

Next, we state the minimum improvement made in the duality gap during each 
iteration of the primal-dual path following algorithm. 

Proposition 3.6. Let w °= (x °, yO, z o) be a valid initial point for the primal-dual path 

following algorithm given in [14] when applied to (P) and (D). Then the algorithm 
generates a sequence of feasible points w k = (x k, yk, Z k) satisfying 

(xk)Tz k <~ (x0)Tz0(1 -- q~/1/ n ) k, 

for some constant 0 < q <~ 1. 

Proof. The statement follows directly from the fact that the convergence proofs 
given for the algorithm in [14] do not rely on rationality of the input data. [] 

We can now state the main results of the section. 

Theorem 3.1. Let 8 >t L(A,  b, c) be given. Then, under the model of  computation 
discussed above, problems (P) and (D) can be solved in time polynomial in p, n, 
and 6. 

Proof. For rational data, it is shown in [15] that the solutions to (P) and (D) can 
be obtained by solving a pair of artificial problems whose size is order of the size 
of (P) and (D). The artificial pair has the property that a valid starting point, with 
known duality gap, is readily available for the primal-dual algorithm. In our case, 
it is a straightforward exercise to show that we can construct a similar pair of 
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artificial problems whose representation size is order of L(A, b, c) and whose starting 
point has a duality gap that is 2 °(p~). Using Propositions 3.5 and 3.6, it is easy to 
show that, given this initial duality gap, the number of  iterations performed by the 
primal-dual algorithm is polynomial in p, n, and 6. Proof  of  the theorem then 
follows by noting that the work performed in each iteration of  the algorithm is 
polynomial in n. [] 

Theorem 3.1 is derived under the assumption that a bound on the representation 
size of (P) is input along with the problem coefficients. As an alternative, we may 
consider a model of input based on an integer representation of the problem 
coefficients. In this model, we assume that every number a ~ Vp in an instance of 

p--1 
(P) is encoded for input as a set of  integers ao , . . . ,  ap-1, such that ~ =~j=o aJ t°j- 
To ensure ce can be calculated from its integer representation, we also assume that 
the machine has available the real part of w (=cos 2w/p), or that it can calculate 
this number. 

We work with a different measure of input size in the integer-based model. We 
define the encoding size of ce ~ Wp to be the sum of the binary encoding sizes of the 
integers a0, • • •, ap 1 in the above expansion. Similarly, we define the encoding size 
of a matrix or LP to be the sum of  encoding sizes of its coefficients. 

We now restate our earlier complexity bounds in terms of the integer-based input 
model. 

Theorem 3.2. Under the model of computation discussed above, problems (P) and (D) 
can be solved in time polynomial in p, n, and the encoding size of  (P). 

Proof. The result follows immediately from Theorem 3.1 by noting that L(A, b, c) 
is bounded by a polynomial in the encoding size of problem (P). [] 

4. Tardos scheme for LP over a subring of the algebraic integers 

In this section, we use the results of Section 3 to modify the Tardos scheme for 
solving combinatorial linear programs [19]. The modifications permit us to solve 
problem (P) of Section 3 in time polynomial in n, p, and the size of the matrix A, 
independent of  the objective and right-hand side data. (In fact, the objective and 
right-hand side coefficients may be arbitrary real numbers.) 

We shall follow the presentation of Tardos' algorithm given by Schrijver in [18, 
Section 15.2], although we present only those key propositions needed for the switch 
from rationals to Vp. 

We consider (P) and (D), the primal-dual pair of LPs defined at the beginning 
of  Section 3. In order to show that these problems can be solved in polynomial time 
independent of  the numbers in b and c, we need several sensitivity results and a 
guarantee that we can find a feasible solution in time independent of the size of 
the right-hand side. We begin with the sensitivity results (Propositions 4.1 and 4.2). 
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Let z' be defined as the solution of the following problem: 

min LLzlI2 

s.t. ATy + z = c. 

As in [18], we may assume z ' #  0 without loss of generality. Now define the vector 
c' as c '=  (mnae+'/llz ' l loo)z '. Note that c' can replace c in (P) without changing the 
optimal solution. Hence, we lose no generality by assuming that the objective vector 
c in (P) already has the form of c'. 

Now, let ~= ( [ c ~ ] , . . . ,  [c,])  x, where [Ck] denotes the smallest integer not less 
than Ck, and consider the following primal-dual pair of LPs: 

(P') min ~Tx 

s.t. AX = b, 

x ~ O ,  

(D') max b~'y 

s.t. A T +  Z = ~, 

z~>O. 

Using the properties of representation height and following the proofs given for 
rational problems by Schrijver [18], one can prove the following sensitivity results. 

Proposition 4.1. Let (~, 5) be an optimal solution to (D') and let A = A(A ,  b, ~). Then, 

II~ll~o~ mAp+I. [] 

The proof of Proposition 4.1, which is independent of the numerical properties 
of the coefficients of (D'), is essentially the same as that given in [18, Lemma A, 
expression (29), pp. 195-196]. 

Proposition 4.2. Let (~, 5) be an optimal solution to (D'), and suppose that (D) has 

an optimal solution. Let A = A ( A ,  b, ~). Then there exists an optimal solution (y* ,  z*) 

to (D) such that: 

(i) Jly*-)711~< mA p. 
(ii) * Zk > O, where k = arg maxj{~}. 

Proof. (i) Let 6 be an upper bound on the absolute value of each entry of B -1, 
where B is any nonsingular submatrix of A. Then it can be shown (cf. [18, Theorem 
10.5, p. 126]) that there exists an optimal solution y* to (D) such that 

Ily*-.FIIoo ~< m,Sllc- [c ] l loo< mS. 

By Cramer's rule, if B is a nonsingular submatrix of A then each entry of B -~ is a 
ratio of  subdeterminants of  A. But since the entries of  A belong to Wp, Proposition 
3.2 gives us the bound ~ <~ AA p-~ = AP. Hence we have Ily* -37[1~ < mAP, as desired. 
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(ii) Let k=argmaxj{( [c ] -AT)7) j} ,  and let y* be the solution to (D) from (i). 
Then, letting AT. denote the kth row of  A T and using statement (i) and Proposition 

4.1, we have 

. <  T ~_~_ Y T ~ A { . y * ~ A k . y  ([[mk.[[1)(lly*-Yll~)<Ak y+A(m,~  p) 

<~ c--mAe+I + A(mAP)<~ c, 

which completes the proof. [] 

Next, we give a nondegeneracy result that is key in proving that a feasible solution 
to a linear program can be found in time independent of the size of the right-hand 
side (cf. [18, Lemma B]). 

Proposition 4.3. Let A be an m x n matrix of  rank m, all o f  whose entries belong to 
Vp. Let f =  ( (z iP+l) ,  ( A P + I ) 2 , . . . ,  (AP+I ) " )  T, where A = ZI(A). Then every basic 

solution of  the system Ax  = A f  is nondegenerate (i.e., for every m x m nonsingular 
submatrix B of  A, the vector B 1Af has no zero components). 

Proof. By Cramer's rule, it suffices to prove that if M is any m x (m - 1) submatrix 
of A with rank m - 1 ,  then the matrix formed by adjoining A f  to M, namely 
[Mc Af] ,  is nonsingular. Proceeding along these lines, we use the definition o f f  
and a well-known expansion for determinants to write 

d e t [ M ' A f ] =  i (ZIP+l )  k detA(k), 
k = l  

where A(k) = [M i A.k] and A k denotes the kth column of A. Let I be largest index 
for which det A(k) • 0. (Such an index must exist since rank (A) = m.) By Proposition 
3.3, if det A(k) # 0 then A ~-P ~ [det(A(k))l ~< ZI. In particular, 

(A p + 1)lldet(A~k))] ~> (A p + 1)I(A~-P). 

But, 

I - 1  

(ziP+ l)k]det(A(k))l 
k = l  

'-~ (ziP + 1) l -- (ziP + 1) 
~< }~ ( A P + I ) k A = A  • <(AP+I) 'ZI  1-p. 

k = l  A P  

• _ }~t (zl p + 1) k det A(k) # O, which completes the proof. [] Hence, de t [M : A f ] -  k=l 

By following the Tardos scheme as presented in [18, Section 15.2], one can easily 
(though admittedly rather tediously) verify that Propositions 4.1 through 4.3 contain 
all the modifications to the proofs of  Tardos'  algorithm necessary for the switch 
from rationals to Vp. 
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Theorem 4.1. Let 8 >1 L(A) be given. Then problems (P) and (D) can be solved in 
time polynomial in p, n, and 6. 

Proof. Note that the effort involved in rounding off the objective and right-hand 

side vectors in Tardos '  algorithm depends only on the size of  m, n, and A (A) and 
not on the size of b or c, since these vectors are scaled before rounding. Therefore, 
the rounding procedure is polynomial  even if b and c are real. 

Because we have available the polynomial-t ime algorithm for LPs with coefficients 
in Vp developed in Section 3, the result follows by the arguments in [18, Section 
15.2] together with Propositions 4.1 through 4.3. [] 

The next theorem follows immediately from Theorem 4.1 by noting that L(A) is 

bounded by a polynomial  in the encoding size of the matrix A. 

Theorem 4.2, Problems (P) and (D) can be solved in time polynomial in p, n, and the 
encoding size of the matrix A. [] 

We are now able to prove the claim, made in Section 2, that LPs with real circulant 
coefficient matrices are strongly polynomial.  

Proof of  Theorem 2.2. By the discussion in Section 2, we have an a priori bound 
on the representation size of  the coefficient matrix, namely L(nA+A)<~2n log n. 
Proof  of the theorem follows directly from this bound and Theorem 4.1. [] 

5. LP in quadratic field extensions 

In this section, we use our earlier results to obtain complexity bounds for linear 
programs in which the coefficients are integer linear combinations of integer square 
roots. In particular, we consider LPs whose coefficients belong to 7/ (d l , . . . ,  dk), 
where we define 7 / ( d l , . . . ,  dk) to be the additive and multiplicative ring generated 

by 1, ~ . . . .  , X~kk; that is, 7 / (d~ , . . . ,  dk) consists of all numbers that have the form 
aj(x/~l)J,(x/-~2) ~ . . . .  (X/~k) ~k, where aj is an integer and the summation runs over 

all (distinct) k-tuples Jj = ( j l , . . .  ,jk) with elements that are either 0 or 1. Because 
we are interested in linear programs with real coefficients, we shall assume that the 
dj are positive. 

Our strategy is to find an integer q such that the set Z ( d ~ , . . . ,  dk) is embedded 
in the set Wq. Using this result, we bound the representation height of  ~ 
7 / ( d l , . . . ,  dk) with respect to Wq by a function of the coefficients in the representation 
of a in terms of the cross products of  the x/-~j. We then apply the results of  Sections 

3 and 4, which bound the complexity of a LP by a function of its representation size. 
We begin by stating a key result due originally to Gauss. Proof  can be found in 

many advanced texts on number  theory (see, e.g., [8]). 
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Proposition 5.1. Let p be an odd prime and let w = e 2~i/p. Then, 

p--1 f~//-p /fp = 1 rood 4, 
60 j2 : 

;=0 [ix/P if  p = 3 mod 4. [] 

We use Proposition 5.1 to characterize the square root of any prime number in 
terms of the roots of unity. 

Proposition 5.2. Let p be a prime. Then W4p contains x/-p. Moreover S4p(v/p)~<p. 

Proof. There are three cases to consider. 
Case 1: p = l m o d 4 .  Using Proposition 5.1, we have x/-p=~j=oP-le2=ij2/P= 

~jp-I e2.tri4je/4p E W4p.  

Case 2: p = 3 m o d 4 .  Again using Proposition 5.1, we have ( - i ) R / p =  
e-wi /2  ~ p - 1  e2.~i4j2/4p _ p-1 • • z...j=o -- ~ j = o  e2~tI(4j2-p)/4P C W4p.  

Case 3: p = 2. It is easy to verify that e2~'~/8 + e 2~'~7/8 = ~/2. It is clear from the above 
expansions that S4p(~fp)~< p in all three cases. [] 

Note that if p = 1 mod 4 then, by Proposition 5.1, x/p also belongs to the smaller 
set Wp. For simplicity we avoid distinguishing this case further. 

To make full use of Proposition 5.2, we need the following simple observation. 

Proposition 5.3. Let n and k be positive integers. Then Wnk contains Ilk. 

Proof. By definition W,k contains o o J = e  2~rinj /nk:  e 2~rij/k, for all j = 0 , . . . ,  k - 1 .  

Because Wnk is a ring it also contains all integer linear combinations of the w:. But 
this last set is just Wk. [] 

Next, we use Propositions 5.2 and 5.3 to characterize an embedding of  Z ( d ) =  
{a [a = a + bx/d; a, b c Z} for d not necessarily prime. 

Proposition 5.4. Let d be a positive integer. Then W4a contains Z(d) .  Moreover 

S4a (~-d) ~< d. 

ProoL By the prime factorization theorem for integers (see, e.g., [8]) we know that 
d = a 2 p l  • • • Pk for some positive integer a and primes Pl, • • •, Pk. Because 4d is an 
integer multiple of 4pj, we know by Proposition 5.3 that W,a contains Wapj. Hence 
by Proposition 5.2, W4d also contains ~ for all j = 1, . . . ,  k. The statement that 
W4d contains Z(d )  follows trivially from this last result and the fact that W4d is a 
ring. Now, by Proposition 5.3, we have S4pj(X/~:)~p:. But by the definition of 
representation height, the relation W4pj~ W4d implies that S4d(X/-~j)~S4p~(x/~j). 
Hence, we can write 

S4d(~/-d) = S4d(x/a2pl " '"  Pk ) 

~< s 4 ~ ( a ) s 4 ~ ( 4 ~ 0  • • • s 4 ~ ( , / ~ )  ~< a 2 p l  • • • p k  ~< a ,  

which completes the proof  of  the proposition. [] 
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Making an easy generalization of Proposition 5.4, we next characterize an embed- 
ding of the ring generated by a number of square roots. 

Proposition 5.5. Let  d~, . . . , dk be positive integers and let d =l~k=l dj. Then, W4d 

contains 7: ( dl , . . . , dk). 

Proof. Since 4d is an integer multiple of 4dj, it follows from Propositions 5.3 and 
5.4 that W4d contains 7:(dj), for all j = 1 , . . . ,  k. But W4d is closed under addition 
and multiplication and so also must contain 7 / ( d l , . . . ,  dk). [] 

Proposition 5.6. Let  d l , . . . ,  dk be positive integers and let d =lJjk=a dj. Let  a c 

7/(dl,.-., dk) have the representation ~ --~ aj(v~l)J~(x/~2) j . . . .  (v~k) jk, where a t is 

an integer and the summation runs over all (distinct) k-tuples Jj = ( j ~ , . . .  , jk)  with 

elements that are either 0 or 1. Then, S4d( a ) <~ d ~ la:[. 

Proof. By the properties of representation height, we have 

S4d(O/)  = S4d( Z aj(x/~l)Jl(  v~2 )  J . . . .  ( ~ k k  ) Jk ) 

s4.(4- Y 2 . . .  jk 

But the relation W4d~c W4d implies that S4d(x/-~j)<~ S4d~(v/-~j)~ dj, where the last 
inequality follows from Proposition 5.4. Thus we have S4d(a)<~d~la j t ,  as 
desired. [] 

We now use these results to bound the complexity of LPs whose coefficients 
belong to Y-(d1, • • •, dk). As in Sections 3 and 4, we assume that we have a machine 
that can perform arithmetic operations on real numbers in constant time per 
operation, and that the machine has available ~ for all j, or that it can calculate 
these numbers. We also assume that every number a c 7 : (d~ , . . . ,  dk) in a problem 
instance is encoded for input as a set of 2 k integers that are the coefficients in the 
representation of a in terms of the cross products of the x/~:. We define the encoding 

size of a to be the sum of  the binary encoding sizes of  these coefficients, and we 
define the encoding size of a matrix to be the sum of the encoding sizes of its entries. 

Theorem 5.1. Let  (P) be the standard form L P  defined at the beginning o f  section 3. 

Suppose that all the coefficients in (P) belong to 7 : ( d l , . . . ,  dk) for  positive integers 

dl ,  . • . ,  dk with d = [[jk I dj. Then (P) can be solved in time polynomial in n, d, and 

the encoding size o f  the matrix A. 

Proof. Using Proposition 5.6, it is easy to show that L ( A )  is bounded by a polynomial 
in log d and the encoding size of the matrix A. Proof of the theorem then follows 
from Theorem 4.1. [] 

If  d is fixed, Theorem 5.1 implies that (P) can be solved in time polynomial in 
the problem dimension and encoding size. We improve these results in a sequel 
paper [1], obtaining a bound which, although exponential in k, is polynomial in 
the bit size of d and the problem encoding size. 
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6. Remarks 

In light of  the results obtained here on the complexity of  LPs with coefficients from 

We, it may be worth investigating what interesting classes of  real numbers can be 
embedded in Wp. It is well-known that every finite Abelian extension of the rationals 

can be embedded in the extension of the rationals by the pth  root of unity, for some 
p (see, e.g., [8]). Therefore, there may be other classes of  LPs whose complexity 
can be bounded in the manner  developed in Section 5 for LPs with coefficients from 
a square-root extension of the integers. 

More ambitiously, one may ask if it is possible to obtain complexity results for 
other classes of  algebraic numbers without first embedding the numbers in Wp. 
Recently, by using some additional material from number  theory in conjunction 

with an approach similar to that of  Sections 3 and 4, we have obtained such results 
for all algebraic numbers [1]. 

In some sense, our approach in this paper  has been to encode a set of  algebraic 
numbers as integers for input to a machine that performs real arithmetic. It is natural 
to ask whether the requirement for real arithmetic can be relaxed to the point where 

all computat ions are performed symbolically, using integer arithmetic only. In fact 
this can be done both here and in the more general context of  an algorithm for all 
algebraic numbers. A report on this topic is under preparat ion [2]. 

In light of  the results in [1], which extend the linear programming results given 
here to general algebraic numbers,  it is worth investigating whether other classes 

of  problems can be shown to be strongly polynomial  by arguments similar to those 
used for circulant LPs. Equivalently, we can ask whether there are other simul- 
taneously diagonalizable families of  matrices whose diagonalizing matrix is com- 
posed of  algebraic numbers (not necessarily from the subring Wp) that are small in 

the appropriate  sense. Indeed, it appears that such families do exist and that 
considerable progress in identifying them can be made by using results from the 
theory of  group representations. We plan to report on this topic in a subsequent paper. 
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