
Polynomial Algorithms for Linear Programming over

Numbers

Ilan Adler and Peter A. Beling

the Algebraic

Department of Industrial Engineering and Operations Research

University of California, Berkeley
Berkeley, CA 94720

Abstract

We derive an algorithm based on the ellipsoid

method that solves linear programs whose coeff-

icients are real algebraic numbers. By defining the

encoding size of an algebraic number to be the bit

size of the coeflcients of its minimal polynomial,

we prove the algorithm runs in time polynomial in

the dimension of the problem, the encoding size of

the input coefficients, and the degree of any al-

gebraic extension which contains the input coef-

ficients. This bound holds even if all input and

arithmetic is performed symbolically, using ratio-

nal numbers only.

1 Introduction

Linear programming with rational numbers is usu-

ally modeled in terms abstracted from the Tur-

ing machine model of computation. Problem in-

put is assumed to consist only of rational num-

bers, and an algorithm is permitted to perform

only the elementary operations of addition, sub-

traction, multiplication, division, and comparison.

The dimension of a problem instance is defined

to be the number of entries in the matrices and

vectors that define the instance, and the size of

an instance is defined to be the total number of

bits needed to encode these entries in binary form.

A linear programming algorithm is said to run in

Permission to oopy without fee ell or pert of this material is
granted provided that the copies are not mada or distributed for
direot commercial advantage, the ACM copyright notice and the
title of the publication and he date appear, and notice is given
that copying is by permission of the Aseooiation for Computing

Machinery. To copy otharwise, or to republish, requires a fee
and/or specific permission.

24th ANNUAL ACM STOC - 5/92/VICTORIA, B.C., CANADA
e 1992 ACM ().89791 -51 2.7192/0004/0483...+” 1.50

polynomial time if the number of elementary op-

erations it performs is bounded by a polynomial

in the problem dimension and encoding size. Typi-

cally, it is further required that the binary encoding

size of any number generated during the course of

a polynomial-time algorithm be polynomial in the

size of the instance.

The polynomial-time solvability of rational-

number linear programs (LPs) was demonstrated

in a landmark paper by Khachiyan in 1979. In

fact, both Khachiyan’s ellipsoid method [7] and

Karmarkar’s interior point method [6] solve LPs

with rational coefficients in time that is polynomial

in the number of input coefficients and the total

number of bits in a binary encoding of the problem

data. Unfortunately, these results do not extend in

any obvious way to LPs whose coefficients are real

numbers.

In the case of real numbers (i.e., numbers that

are not necessarily rational), linear programming

is usually modeled in terms of a machine that

can perform any elementary arithmetic operation

in constant time, regardless of the nature of the

operands. (See [2] for a treatment of the theory of

general computation over the real numbers.) Prob-

lem dimension is defined as in the rational case,

but because a general real number cannot be rep-

resented by a finite string of digits, there is no corr-

esponding notion of the size of a real-number LP.

An algorithm is said to run in polynomia/ time if

the number of elementary operations it performs is

bounded by a polynomial in the problem dimen-

sion. By this definition, no polynomial-time algo-

rithm is known for general real-number LPs.

Complexity results for both the ellipsoid and in-

terior point methods depend in a fundamental way

483

on upper and lower bounds on the magnitude of

certain numbers related to basic solutions of the

LP. If the problem data is rational, the bounds are

a function of the bit size of the data and can be

computed in polynomial time. If the data is not

rational, it is still possible to compute the neces-

sary upper bounds in polynomial time, but no poly-

nomial method for computing the lower bounds is

known [12]. In fact, in this case it is possible to

construct examples in which the running time of

the ellipsoid method is arbitrarily bad compared

with the problem dimension [20].

Using an approach that is quite different from

that of the existing polynomial algorithms for

rational-number LPs, Megiddo has shown that sev-

eral special classes of real-number LPs can be

solved in polynomial time. In [10] a polynomial al-

gorithm is given for feasibility problems in which at

most two vsriables appear in each inequality, and

in [11] one is given for LPs in which the number

of variables is fixed, In fact, these algorithms are

strongly polynomial: they are polynomial in both

the rational and the real senses.

Adler and Beling [1] have shown that a variant

of the interior point method can solve LPs whose

coefficients belong to a particular subring of the al-

gebraic integers. The combination of this algorithm

with a variant of the Tardos scheme [19] leads to a

strongly polynomial algorithm for LPs whose coef-

ficient matrices are circulant. (LPs of this kind are

related to discrete convolution and arise frequently

in image processing.)

In thk paper, we show that the ellipsoid method

can be used to solve LPs whose coefficients are real

algebraic numbers, in spite of the fact that these

numbers are generally not rational. The key to

our result is a notion of problem size that is anal-

ogous in form and function to the binary size of

a rational-number problem. Specifically, we mea-

sure the size of an algebraic number in terms of bit

size of the rational numbers that define its minimal

polynomial. We also view the problem coefficients

as members of a finite algebraic extension of the ra-

tional numbers. The degree of this extension is an

upper bound on the degree of any algebraic number

that can occur during the course of the algorithm,

and in this sense can be viewed as a supplementary

measure of problem dimension.

An essential feature of our construction is a tool

for obtaining upper and lower bounds on linear and

polynomial forms involving algebraic integers (see

proposition 3.1). In addition to being interesting

in its own right, thk tool permits us to obtain ‘rea-

sonable’ upper and lower bounds on certain quan-

tities involving the basic solutions of the LP. These

bounds are a function of the degree of the exten-

sion in which we work and the size of the data.

We use these bounds to show that our algorithm’s

running time is polynomial in the dimension of the

LP, the degree of the extension defined by the input

coefficients, and the size of the data.

As an analytic convenience, we work initially

under a model of computation that allows real-

number input and arithmetic. In fact, this assump-

tion is stronger than necesssry. Later we show that,

by handling algebraic numbers in a symbolic fash-

ion, we can achieve materially the same results un-

der a rational-number model of computation.

The paper is organized in the following manner:

In section 2, we provide a brief review of terminol-

ogy and concepts from algebra and number theory

that we use in the remainder of the paper. In sec-

tion 3, we derive basic complexity bounds for LPs

whose coefficients are real algebraic integers (we

lose no generahty by the working with the alge-

braic integers rather than the full set of algebraic

numbers). In particular, we establish a chain of

polynomial problem equivalences that leads from

the linear programming problem to a problem that

can be solved by the ellipsoid method in polyno-

mial time. In section 4, we show how we can use

our earlier results to obtain complexity bounds un-

der several different assumptions about the form of

the input data. In section 5, we discuss how one

can perform all input and computations in the lin-

ear programming algorithm using rational numbers

only. Finally, in section 6, we conclude with some

remarks.

2 Algebraic Preliminaries

In thk section we give a brief review of the ter-

minology and concepts from algebra and number

theory that we shall use throughout the remainder

of the paper. Proofs and detailed discussion of the

484

results stated here can be found in most texts on

algebraic number theory (see, e.g., [5], [16], or [17]).

We begin by stating the basic terminology we

shall use to describe polynomials.

Definition. Let F(t) = @d + . . . + qlt + qo be

a polynomial in indeterminate t with coefficients

go,... , qd ~ Q where qd # O. (We use the stan-

dard notation Z for the integers, Q for the ratio-

nals, R for the reals, and C for the complex num-

bers.) We define the degree of F to be d, the index

of the leading coefficient of F, and we write this

quantity as deg(F). We say F is a monic polyno-

mial if qd = 1. F is reducible over the rationals

if there exist polynomials F1 and F2 with rational

coefficients and strictly positive degrees such that

F(t) = F1 (t) F2(t); otherwise F is irreducible over

the rationals.

Polynomials with rational coefficients are inti-

mately related to the algebraic numbers, a subset

of the complex numbers that is central to our work.

Definition. A complex number a is an azgebraic

number if there exists a polynomial F with rational

coefficients such that F(cY) = O.

Clearly, each algebraic number is the root of

many polynomials. Among these, we distinguish

one polynomial as being of particular importance.

Proposition 2.1 Let a be an algebraic number.

Then CYis the root of a unique monic, irreducible

polynomial with rational coefficients.

The polynomial whose existence is asserted in

proposition 2.1 is known as the minimal polynomial

of a. We define two key attributes of an algebraic

number in terms of its minimal polynomial.

Definition. Let a be an algebraic number with

minimal polynomial G of degree d. We define the

degree of the algebraic number CYto be d, the de-

gree of its minimal polynomial, and we write thk

quantity as deg(a). By the fundamental theorem

of algebra, G has d (possibly complex) roots, say

~1,...,~d. We call al,... , CYdthe CO?@@fM of a.

(Note that the conjugates of a include a itself.)

One can show that the conjugates of an algebraic

number are distinct, and that they share the same

minimal polynomial.

Certain classes of algebraic numbers enjoy the

property that the class is closed under arithmetic

operations among its members; other classes are

defined on the basis of this property. Before in-

troducing several such classes, we review standard

terminology for sets that are closed under arith-

metic operations.

Definition. A subset V of the complex numbers

is called a subring of the complex numbers if 1 E V
and if, for any a,~ 6 V, we have –a, Q + ~, @ G

V. A subset TV of the complex numbers is called

a subfield of the complex numbers if 1 E W and if,

for any a,~ E W with a # O, we have –a, l/a, a+

/3, @ c w.

Proposition 2.2 The algebraic numbers form a

subjield of the complex numbers.

Given an algebraic number a, we shall often be

interested in the set of all numbers that can be

‘built up’ by a sequence of arithmetic operations

using rational numbers and a. We define this set

in terms of a subfield.

Definition. Let a be an algebraic number, We de-

fine Q(a) to be the smallest subfield of the complex

numbers that cent ains both a and the rationals Q.

We call Q(cY) a single algebraic extension of the ra-

tional numbers by a. We define the degree of the

extension Q(a) to be deg(a).

The following property of single algebraic exten-

sions is particularly important for our purposes.

Proposition 2.3 Let CYbe an algebraic number of

degree d. Then every ~ c Q(cx) is an algebraic

number of degree at most d. Moreover, every /3 E

Q(a) has the representation ~ = q.+ qla + . . . +

q&l CXd-l for a unique set of rational coefficients

qo,ql>. ... q&l.

The next proposition characterizes the conju-

gates of every member of a single algebraic ex-

tension in terms of the conjugates of the algebraic

number that defines the extension.

Proposition 2.4 Let a. be an algebraic number of

degree d with conjugates ~j, where j = 1,..., d. Let

F be a polynomial with rational coefficients. Then

the conjugates of/3 = F(a) are the distinct mem-

bers of the collection {F(cYj); j = 1,...,d}.

485

As a natural generalization of the notion of a

single algebraic extension, we have the following

definition:

Definition. Let al,..., cr~ be algebraic numbers.

Then we define the muJtip/e algebraic extension

Q(cq, an) to be the smallest field that contains

al,. . . ,CXn ~d Q.

Rather surprisingly, every multiple extension is

also a single extension.

Proposition 2.5 Let al,..., an be algebraic num-

bers with degrees all,. ... dn, respectively. Then

there exists an algebraic number 6 of degree at most

I’1~=1 dj SUCh that Q(w, . . . ,~~) = Q(o).

The algebraic number O whose existence is as-

serted in proposition 2.5 is not unique. Indeed,

for any algebraic number a, it is evident from

the definition of a single algebraic extension that

Q(a) = Q(a + 1). The degree of a single algebraic

extension, on the other hand, is uniquely defined.

Proposition 2.6 Let CY and ~ be algebraic num-

bers such that Q(a) = Q(/3). Then deg(cr) =

deg(/3).

In light of proposition 2.6, we are justified in

defining the degree oj a multiple algebraic extension

to be the degree of any equivalent single extension.

Combining propositions 2.3 and 2.5, we see that

every member of a multiple extension can be ex-

pressed as a polynomial function of a single alge-

braic number.

Corollary 2. I Let Q(crl,..., cY~) be a mtdtiple aL

gebraic extension of degree d. Then every /3 E

Q(Crl,..., CKn) is an algebraic number of degree at

most d. Moreover, there exists an algebraic number

0 of degree d such that every/3 c Q(cq,..., cY~) has

the representation P = qo + qlo +”” “ + q&ldd-l for

a unique set of rational coefficients qo, . . ., qd–1.

At this point we introduce a particular subset of

the algebraic numbers that will, when we turn to

linear programming, prove to be somewhat easier

to work with than the full set of algebraic numbers.

Definition. A complex number a is an algebraic

integer if there exists a monic polynomial F with

integer coefficients such that F(a) = O.

It follows that every algebraic integer is also an

algebraic number. The converse is not true, as can

be seen from the next result.

Proposition 2.7 Let a be an algebraic number.

Then a is an algebraic integer if and only if the

minimal polynomial of a over the rationais has in-

teger coefficients.

In light of the following proposition, one can

view an algebraic number as the quotient of an al-

gebraic integer and m integer.

Proposition 2.8 Let H(t) = td + q&~t d–1 +

“”” + qlt + qo be a polynomial with coefficients

qo9. . . . qd-1 E Q, and let z be a common denom-
inator for qo, . . .> !/d-l. Then if a is a root of H,

the product za is a root of F(t) = td + .Zq<d–l +
. . . + zd–lqlt + .zdqo. Moreover, the coefficients of

F are all integers.

Although always an algebraic number, the quo-

tient of two algebraic integers is not, in general, an

algebraic integer. The algebraic integers are closed,

however, under addition, multiplication, and nega-

tion.

Proposition 2.9 The algebraic integers form a

subring of the complex numbers.

It will prove convenient to have the following

shorthand notation for the algebraic integers.

Definition. We define A to be the set of all al-

gebraic integers, and we define & to be A. n 1?,
the set of all algebraic integers that are also real

numbers.

As a final preliminary, we define some notation

concerning matrices and vectors. Given a set K,
we use Krxs and .Kr to denote the set of all r xs

matrices and the set of all column r-vectors whose

components belong to K. Given a matrix or vector

M, we use 111~ to denote the transpose of M.

3 Linear Programming over the

Algebraic Integers

We consider the following linear program:

(P) max CTX

St. Ax < b,

486

where A c ~~ ‘n with full column rank, tJ c A.&,

c c ~~, and z 6 Rn. Our goal in this section is to

bound the complexity of problem (P).

It is important to note that we lose no general-

ity by working with the algebraic integers instead

of the full set of algebraic numbers. Recall from

proposition 2.8 that we can view an algebraic num-

ber as the quotient of an algebraic integer and an

integer. It follows that, if we are given a LP of

the form (P) in which the coefficients are algebraic

numbers — but not necessarily algebraic integers

— then, by multiplying the constraints and the ob-

jective by an appropriate integer, we can transform

the problem into an equivalent problem that in-

volves only algebraic integers. It is straightforward

to show that this transformation is polynomial in

the input measures that will be defined later.

We now develop the tools that we shall use in

analyzing the complexity of problem (P). Our im-

mediate goal is to establish upper and lower bounds

on certain functions of a G ~ (there is no need to

specialize to real numbers until we discuss systems

of inequalities and linear progriwns, entities which

are not generally defined in terms of complex num-

bers). As a first step toward this goal, we define a

measure of the magnitude of the roots of the min-

imal polynomial of a.

Definition. Let a be an algebraic integer of degree

d, and let al ,. ... ctd be the conjugates of a. We

define the conjugate norm S(a) of a to be:

S(a) = max{lcql,. . . . la~l},

where we use the standard notation]/31 for the mag-

nitude of the complex number ~ (i.e., 1~1 = fi,

where ~ is the complex conjugate of /3).

The following proposition gives the main alge-

braic and metric properties of the conjugate norm.

Proposition 3.1 Let a, /3 c A. Then,

(i)

(ii)

(iii)

(iv)

S(WI + I@ < lalS(a) +]blS(/3), for any inte-

gers a and b,

S(ap)< S(a)s(p),

ICYl< s(a),

If a # O, then [al > (S(a))l–d, where d =

deg(a).

Proof. (i) By corollary 2.1, there exists an al-

gebraic number O such that a and ~ have the

unique representations Q = $’a (0) and ~ = F’(8)

for some polynomials F. and Fp with rational

coefficients. By proposition 2.4, we know that

the conjugates of a and ~ are the distinct mem-

bers of {Fa (Oj) } and {F” (Oj) }, respectively, where

the Oj, j = 1,.,., deg(0), are the conjugates’ of

6. Hence, S(a) = maxj{[F’a(Oj)l} and S(P) =

maxj{[Fp(Oj)l}. Since aa + b~ = aFa(6) + bFp(6)
is also a rational polynomial in 6, we also know

that the conjugates of aa + b~ are the distinct

members of {aFa (Oj) + bFP (Oj) }. Thus, we have

S’(aa + b~) = maxj{la~~(oj) + b~p(oj)l}
< lalS(a) + lblS(~).

(ii) The proof of this statement follows by an ar-

gument similar to that used in (i).

(iii) This statement is obvious from the definition

of s(a).
(iv) Let G(t) = (i! - a~)(i! - a2) 0.0 (t - ad) be the

minimal polynomial of a, where we may assume

a = al. Since a is an algebraic integer, we can also

write G(t) = td+ zd_ltd–l+”. o+ Zlt+ Z. for some

integer coefficients zo, z~–l. It is clear that the

constant term, Z., must not be zero, since if it were

zero we could divide G(t) by t to obtain a (monic)

polynomial of strictly smaller degree, contradicting

the irreducibility of G(t). Hence, we have IZo\ ~

1. But, by matching coefficients between the two

expansions of G(t), we see that .zO= JJf=l aj. It

follows that JJ$=l laj I ~ 1. Using the inequality

Iajl < S(a) implied by the definition of conjugate

norm, we then have ICYI= lcq I ~ (S(a))l–~, which

completes the proof of the proposition. •1

We shall use proposition 3.1 to derive several

useful results concerning matrices and systems of

inequalities whose coefficients are algebraic inte-

gers. These results are most easily stated in terms

of the notation introduced below.

Definition. Let M c A’” and let Mjk denote the

jkth entry of M. We define the conjugate norm of

the matrix M to be

Z’(M) = rn,y{s(Mjk)}.

Let I denote the rank of M. Then we define the

487

conjugate size of the matm”z M to be

L(M) = tlog(lz’(M)),

where by log we mean the base-2 logarithm. Ad-

ditionally, we define the degree of the matriz M to

be the degree of the multiple algebraic extension

Q({~j~}), ~d We write this qu~tity w deg(M).
We use similar notation when discussing linear

programs. Let (Q) denote the problem {max fTv :

MU s g}, where M G d;’, g c AL, and f E d;.

Let W denote the set of all entries in M, g, and f.

We define the conjugate norm of the linear program

(Q) to be

T(M, g, f) = rnn~{S(a)}.

Let 1 denote the rank of M. We define the conju-

gate size of the linear program (Q) to be

L(M, g, f) = tlog(fT(M, g, f)).

Additionally, we define the degree of the linear pro-

gram (Q) to be the degree of the multiple alge-

braic extension Q(V), and we write this quantity

as deg(M, g, f). We use analogous notation with

respect to systems of linear inequfllties.

Having fixed notation, we now derive some char-

acteristics of a matrix determinant that are funda-

mental to our later work.

Proposition 3.2 Let B ~ ~rxr, and let L =

L(B) and d = deg(B). If B is nonsingular then

(ii) deg(det(B)) < d,

(iii) S(det(B)) < 2L,

(iv) 2il-~JL < I det(B)l < 2L.

Proof. The statement follows easily from the

properties of conjugate norm given in 3.1. •1

As a consequence of the last proposition, we ob-

tain apriori bounds on the magnitude and conju-

gate norm of the vertices of polyhedra whose defin-

ing coefficients belong to A.R.

Proposition 3.3 Let M c A~s, g c A;, and let

L = L(M, g) and d = deg(M, g). Suppose @ is a

vertex of {v c R’]Mv < g}. Then every compo-

nent @j of G can be written in the form Gj = ~j[~,

where

(ii) deg(cxi) < d, deg(~) < d,

Proof. The statement follows trivially from propo-

sition 3.2 and Cramer’s rule. •1

Propositions 3.1 through 3.3 constitute our basic

analytical tools. Using them, we can show how to

modify almost any variant of the ellipsoid method

[7] or the interior point method [6] to solve problem

(P) in time polynomial in the problem dimension,

degree, and conjugate size. In the remaining part of

this section, we outline a procedure that is centered

on the ellipsoid method. We shall loosely follow the

analysis given for problems with rational data by

Papadimitriou and Steiglitz [15].

For the purposes of the complexity analysis, we

assume that we have a machine that performs ad-

dition, subtraction, multiplication, division, and

comparison of real numbers in constant time per

operation. We refer to this model as the real-

number model of computation and to algorithms

derived under it as real-number algorithms. (See

[2] for a treatment of the theory of general compu-

tation over the real numbers.)

We assume that the input of an instance of the

linear program (P) consists of the following items:

(ii) deg(A, b, c),

(iii) L(A, b, C).

Our strategy for establishing the polynomial-

time solvability of (P) is to establish a chain of

polynomial problem transformations leading from

(P) to a problem that cm be solved by the ellipsoid

method in polynomial time.

488

We begin by noting that, given the duality theo-

rem of linear programming, solving the linear pro-

gram (P) is no harder than solving a set of linear

closed inequalities. As a matter of language, we

say an algorithm solves a system of inequalities if

it gives us a report that the instance is infeasible or

a feasible solution to the instance, as appropriate.

Proposition 3.4 Let M c d~$ with full column

rank, g c A:, and let 6, A c R be such that

deg(M, g) < 6 and L(M, g) < ~. Suppose there

exists a real-number algon”thm that, given M, g, 6,

and A, solves MU < g in time polynomial in r, 6,

and A. Then there exists a real-number algorithm

that solves the linear program (P) in time polyno-

mial in m, deg(A, b, c), and L(A, b, c).

Proof. By writing the conditions of primal fea-

sibility, dual feasibility, and equality of objectives

values as a system of closed inequalities, we can re-

duce linear programming to linear closed inequali-

ties. Proof of the proposition follows by noting that

the row dimension, degree, and conjugate size of

the system constructed from (P) in this way are in-

dividually bounded from above by a polynomial in

the corresponding quantities associated with (P).

❑

Next we note that we can solve a system of lin-

ear closed inequalities by solving a closely related

system of linear open inequalities.

Proposition 3.5 Let M c d~s with full col-

umn rank, g c A;, and let L = L(iW, g) and

d = deg(M, g). Let e, denote the r-vector of all
2dLMv < 22dLg + erones. Then the open system 2

is feasible if and only if the closed system Mv ~ g

is feasible. Moreover, there exists a real-number al-

gorithm that, given a solution to one system, finds

a solution to the other system in time polynomial

inr.

Proof. The proof is an adaptation of that given

by Papadimitriou and Steiglitz [15, lemma 8.7, pp.

173–174] for an analogous result concerning sys-

tems with rational coefficients. The main differ-

ence lies in the use of the properties of conjugate
norm (proposition 3.1) to derive lower bounds on

linear and polynomial forms. •1

We require one more preliminary result before

we can state the main result of the section.

Proposition 3.6 Let M E A~S, g c AL, and let

L = L(M, g) and d = deg(M, g). Let K = {v c

R8 IMv < g}. Then if K is bounded and nonempty

the s-dimensional volume of Ksatisjies vols (K) >
2-4sdL .

Proof. The proof of proposition 3.6 is an adap-

tation of a standard proof given for the analogous

result concerning systems with rational coefficients

(cf. [4] or [15]). The main difference lies in the use

of the properties of conjugate norm (proposition

3.1) to derive lower bounds on linear and polyno-

mial forms. •1

We now state the main result of the section.

Theorem 3.1 There exists a real-number algo-

rithm that solves the linear program (P) in time

polynomial in m, deg(A, b, c), and L(A, b, c).

Proof. (Outline) In light of proposition 3.4, it suf-

fices to demonstrate the existence of a polynomial

algorithm for solving systems of linear closed in-

equalities. By proposition 3.5, thk problem is, in

turn, polynomially reducible to that of solving a

system of linear open inequalities. It follows from

propositions 3.3 and 3.6, that we can always struc-

ture the reduction so that the resulting system is

sufficiently well-bounded that it can be solved by

the ellipsoid method (cf. [15] or [4]) in polynomial

time. •1

4 Extensions to Other Input

Models

In the previous section, we derived a solution pro-

cedure and associated complexity bounds for prob-

lem (P) under the assumption that, in addition to

the coefficients that define the instance, input of

an instance of (P) includes bounds on the degree

and conjugate size of the instance. In many situa-

tions these bounds may not be known apriori and

so must be deduced, if possible, from information

about the individual problem coefficients.

In this section, we discuss ways of obtaining
problem degree and conjugate size bounds under

several different assumptions about the form of the

problem coefficients. Because we cannot anticipate

every possible input form, the discussion is more

489

illustrative than exhaustive. We begin by working

through an example in which the problem degree

and conjugate size, although not apparent from

the given data, are easy to bound. The nature

of this analysis leads us to consider some results

from number theory that serve as useful tools for

obtaining bounds for other input forms. We then

consider several examples that illustrate the use of

these results. We conclude the section by show-

ing how our results generalize from the algebraic

integers to the algebraic numbers.

Throughout this section, we shall used to denote

the degree and L to denote the conjugate size of

(P); that is

d = deg(A, 1+c), L = L(A, b, c).

Additionally, we shall use I@to denote the set of all

entries in A, b, and c.

Example 4.1. For every a G V, suppose that,

in addition to the actual numerical value of a, we

know a set of four integers .zo, ZI, z2, Z3 such that

o! =z0+ZI&+Z2&+Z3&.

Our first goal is to bound the problem conjugate

size, L, by a function of the quantities available

to us. As it will turn out, a useful input measure

for thk purpose is the total number of bits in a

binary representation of the integers that deilne the

members of T! in terms of the square roots. We use

E to denote this number.

Recall that L is a nondecreasing function of

S(a), CYG V!. Hence, we may first bound the conju-

gate norms of the individual input coefficients and

then calculate a bound on L from these quanti-

ties. Proceeding along these lines, we note that if

a = Z. + Z1W + .22@+ 23 m, then by the prop-

erties of the conjugate norm (proposition 3.1) we

have

s(a) = S(ZIJ+ Zlfi+ z2&+ z3/ii)

< Izol + 1211s(/2’) + lz21s(ti) + [231s(/6).

‘I’he problem of bounding L is thus reduced to that

of finding (or bounding) the conjugate norms of the

square-root terms.

Let p be a positive integer such that p is not the

square of another integer. It is easy to show that

F(t) = t2 – p is the minimal polynomial of@ It

follows that the conjugates of@ are @ and –W.

Hence, we have S(@) = max{l~l, I–@l} = @.

Substitution in our earlier inequahty then gives

s(a) < Izo[+ Izllfi+ lz21ti+ lz31fi, ‘

which holds for any a E Ill. Using this bound in

the formula that defines L, it is straightforward to

show that L s ml?.

It remains for us to bound d, the degree of (P).

First note that, by the definition of the degree

of a linear program, d equals the degree of the

multiple algebraic extension Q (iii). It is obvious

from the form of the problem coefficients that ev-

ery a ~ IP also belongs to Q(fi, n, W). This

implies Q(W) C Q (W, W, @. It follows from

corollary 2.1 that d is no larger than the degree of

Q(W, W, W). Letting ~ denote this last quantity

and using proposition 2.5, we then have

d < ~ < (deg(fi))(deg(fi))(deg(fi))

= 8,

where we have used the fact that deg(fi) =

deg(w) = deg(fi) = 2.

Actually, we can tighten the bound on d somew-

hat by noting that, since (W)(W) = W, the

extensions Q(ti, W, @ and Q(ti, @ are, in

fact, the same, and so must have the same degree.

Hence we have d < 4. Although insignificant in

thk simple example, the savings from observations

of this kind can sometimes be quite substantial (cf.

example 4.2).

As a final observation we note that, based on our

bounds for d and L, theorem 3.1 implies that (P)

can be solved in time polynomial in m and E.

The ad hoc analysis given in example 4.1 illus-

trates an effective strategy for many input forms.

To bound L, we first bound S(a) for each a E U. If

we know a representation for a in terms of other al-

gebraic integers, we use the properties of the conju-

gate norm to reduce the problem to that of bound-

ing the conjugate norm of those algebraic integers.

To bound d, we identify a set of algebraic num-

bers — hopefully smaller than W itself — such that

the multiple algebraic extension generated by these

numbers includes Q(W). We then can claim that

d is at most the product of the degrees of these

algebraic integers.

490

The input form considered in example 4.1 is a

special case of the form a = ~ ZjOj) where zj is an

integer and Oj is an algebraic integer. It is clear

that in order to use the general approach outlined

above to find bounds for problems with this form

we must know something about the degree and con-

jugate norm of Oj, for each j. This reflects a general

caveat; in any attempt to bound the degree and

conjugate size of a linear program, we ultimately

reach a point where we must bound the degree and

conjugate norm of an individual algebraic integer.

Therefore, it is worth considering how to obtain

these bounds from the auxiliary information com-

monly associated with an algebraic integer.

We begin along these lines by introducing some

additional terminology concerning polynomials and

algebraic integers.

Definition. Let ~(t) = zdtd + 0.0-1- ZIi + ZII

be a polynomial with coefficients Zo,..., z~ 6 Z.

We define the height of the polynomial F to be

maxj { lzj [}. We define the height of an algebraic

integer to be the height of its minimal polynomial.

Next we state a well-known result from the the-

ory of transcendental numbers that relates the con-

jugate norm of an algebraic integer to its height.

Proposition 4.1 Let a be an algebraic integer of

height h. Then S(a) < 2h.

See, e.g., [18] for proof of proposition 4.1.

For the purpose of bounding the degree and

height of an algebraic integer, it suffices to know

the degree and height of any monic, integral poly-

nomial of which the algebraic integer is a root, as

the following proposition shows.

Proposition 4.2 Let F be a monic polynomial

with integer coefficients, degree 1, and height h.

Then evey root of F is an algebraic integer of de-

gree at most 4 and height at most 4eh.

See, e.g., [13] for proof of a generalization of

proposition 4.2.

As an illustration of the use of the preceding

results, we next obtain bounds for an input form

that arises in the theory of LPs whose coefficient

matrices are circulant.

Example 4.2. Let w be the first primitive pth root

of unity; that is,

w e2uilf’, where ~ == W and p is integer.

In addition to V!, suppose that we know the follow-

ing:

(i) a positive integer p such that every CY G I&

can be written as a = ~~~~ ZjkJj for integers

Zo, ... ,zp-l.

(ii) for every a G*, a set of integers zo,..., ZP-l

such that a = ‘@ zjwj.

Let E denote the total number of bits in a binary

represent ation of the integers Zj in (ii) above.

We begin by finding a bound on the conjugate

norm of each member of Il. If a = ~~~~ zjw~, then

we have
p–1

S(CY) < ~ lZjlS((4)j),
j=O

We now concentrate on bounding S(u~), for all j G

{o ,. ... p – 1}. First note that since@’= 1 for all

J 07...,P
“= -1, it is clear that wj is a root of the

polynomial F(t) = tp - 1. Although F is not the

minimal polynomial of w~, it does give us enough

information to bound S(u~). In particular, since F

has degree p and height 1, proposition 4.2 implies

that wj has height at most 4P. Proposition 4.1 then

gives S(W~) < 4P+1, which in turn gives

p–1

S(CI) < 4P+’ ~ Izjl.

j=(l

Using this last bound it is easy to show that L <

3mE.

To bound d, note that Q(V) c Q(u), and so

d < deg(u). But w is a root of F(t) = W – 1 and so

by proposition 4.2 has degree at most p. Hence we

have d < p. (In fact, it is possible to sharpen our

bounds on L and d somewhat by using additional

results from number theory concerning the roots of

unity.)

Combining our bounds on d and L with theorem

3.1, we see that (P) can be solved in time polyno-

mial in m, p, and E.

491

LPs of the form considered in example 4.2 are

analyzed in a different manner but with similar re-

sults in [1].

We next consider LPs in which we have direct

knowledge of the minimal polynomial of each alge-

braic integer in the problem.

Example 4.3. For every a 6 !I?, suppose that

we know both the numerical value of a and the

minimal polynomial of a.

Let ~ = HaeW deg(a), the product of the de-

grees of the minimal polynomials associated with

the members of W. Also, let E denote the total

number of bits in a binary representation of the

coefficients of these polynomials.

Using proposition 4.1, it is straightforward to

show that L is bounded from above by the prob-

lem encoding size. To bound d, we again make use

of the fact that d is the degree of the multiple al-

gebraic extension Q(W). Recall that proposition

2.5 states that the degree of a multiple algebraic

extension is at most the product of the degrees of

the algebraic numbers that define the extension.

Hence, we have d < ~.

Using theorem 3.1 and our bounds on d and L ,

we see that (P) can be solved in time polynomial

in m, ~, and E.

Using proposition 4.2, it is easy to generalize

the results in example 4.3 to the case in which

the polynomials associated with the problem coeffi-

cients are monic and integral but not necessarily ir-

reducible. The results are similar to the irreducible

case.

5 Rational-number Model of

Computation

The complexity bounds given in sections 3 and 4

are derived under a model of computation that al-

lows real-number input and arithmetic. In fact,

this assumption is stronger than necessary. One

can achieve materially the same results under a

rational-number model of computation by using a

well-known scheme for the symbolic manipulation

of algebraic numbers in conjunction with the re-

sults of section 3. We provide an outline of such a

procedure below, but defer a full exposition of the

(somewhat messy) details to a subsequent paper.

Recall from proposition 2.4 that the conjugates

of an algebraic number are distinct. Hence, if a

is a real algebraic number with minimal polyno-

mial G, then there exists an interval with ratio-

nal endpoints, say [ql, qz], that contains Q but does

not contain any other root of G. Since the triplet

(G; 91, ~2) unambi~ously defines a, we can rePre-

sent a in a rational-number machine by storing gl,

q2, and the coefficients of G.

It can be shown that the roots of G are suffi-

ciently small and well-separated that there exists

an isolating interval whose binary encoding size is

polynomial in the binary encoding size of the co-

efficients of G. In fact we can construct such an

interval; there are several well-known algorithms

that isolate the roots of a polynomial in time poly-

nomial in the binary size of its coefficients (see [3]

for a survey of such algorithms).

To be useful as part of a linear programming

algorithm, the triplet scheme must allow us to ma-

nipulate algebraic numbers as well as represent

them. It follows from some results of Lovasz [9],

that, given triplets for two algebraic numbers, we

can find a triplet that represents their sum, differ-

ence, product, or quotient in time polynomial in

the encoding lengths of the given triplets. We can

also compare two triplets in polynomial time.

Equipped with a means of representing and

manipulating algebraic numbers, we can establish

complexity bounds for linear programming in much

the same manner, and with similar results, as is

done in section 3. The overall bound is polynomial

in the problem dimension, problem degree, and the

bit size of the triplets that represent the input co-

efficients.

An unavoidable extra complication of working

with a rational-number model of computation is

that we must be careful to control the bit size of

the rational numbers that occur during the course

of the linesr programming algorithm. As in the

analysis of ordinary rational-number LPs, the two

subalgorithms of particular concern are the ellip-

soid method and Gaussian elimination. Also as

in the standard analysis, we can ensure that these

procedures stay under control by relating the size

of each intermediate number to that of the input

data.

In the case of the ellipsoid method, this can be

492

done with the aid of the standard finite precision

variant developed for rational-number LPs (see,

e.g. [15] or [4]). Briefly, we use limited-precision

rational numbers to calculate and represent each el-

lipsoid. Exact (triplet) arithmetic is used only for

the linear separation subroutine. A feasible triplet

can then be recovered using Gaussian elimination

(cf. proposition 3.5).

In the case of Gaussian elimination, we can ar-

range the computation so that each intermediate

number is a subdeterminant of the input matrix

(see, e.g., [4]). But by using the results in section

3, it is easy to show that the encoding size of any

subdeterminant is bounded by a polynomial in the

encoding size of the input matrix and the degree

of the multiple algebraic extension defined by its

entries.

6 Remarks

1) Using the basic analytical tools presented in sec-

tion 3, one can modify the algorithm for combina-

torial LPs given by Tardos [19] so that it works

with LPs whose coefficients are algebraic integers.

As in the rational case, the running time of the

resulting algorithm is independent of the data in

the objective and right-hand side. The details of

this extension are quite similar to those given in

[1], where Tardos’ scheme is extended from the ra-

tionals to the cyclotomic integers.

We also note that it may be possible to make

a similar extension to the algorithm of Norton,

Plotkin, and Tardos [14], which solves LPs in time

independent of the data in a fixed number of rows

or columns of the coefficient matrix.

2) In [1] it is shown that standard form LPs

with circulant coefficient matrices can be solved

in strongly polynomial time. The basic idea is

to transform the given problem into an equivalent

problem in which the entries of the coefficient ma-

trix belong to the subring of the algebraic integers

discussed in example 4.3 and are small in conjugate

norm. This can be done by multiplying the equal-

ity constraints by the pseudoinverse of the coeffi-

cient matrix. The transformed problem can then

be solved in strongly polynomial time by using a

variant of the Tardos scheme (see the previous re-

mark) in conjunction with a polynomial-time al-

gorithm for LPs whose coefficients belong to the

subring.

In light of the results in this paper, which ex-

tend the linear programming results in [1] to gen-

eral algebraic numbers, it is worth investigating

whether other classes of problems can be shown

to be strongly polynomial by arguments similar to

those used for circulant LPs. Equivalently, we can

ask whether there are other simultaneously diago-

ndlzable families of matrices whose diagonalizing

matrix is composed of small algebraic numbers (not

necessarily from the subring in [1]). Indeed, it ap-

pears that such families do exist and that consid-

erable progress in identifying them can be made

by using results from the theory of group repre-

sentations. We plan to report on this topic in a

subsequent paper.

Acknowledgments

We thank Leonid Khachiyan, Uriel Rothblum, and

Ron Shamir for valuable discussions on extending

our earlier work with cyclotomic integers to the

present case. We are also indebted to Michael Todd

for perceptive comments about the generalization

from algebraic integers to algebraic numbers.

This research was funded by the National Sci-

ence Foundation under grant DMS88-10192. We

greatly appreciate this financial support.

References

[1]

[2]

[3]

L Adler and P. A. Beling, Polynomial Algo-

rithms for LP over a Subring of the Alge-

braic Integers with Applications to LP with

Circulant Matrices, Proceedings of the 3.%d

Annual IEEE Symposium on Foundations of

Computer Science, pp. 480-487, 1991.

L. Blum, M. Shub and S. Smale, On a Theory

of Computation and Complexity over the Real

Numbers; NP-completeness, Recursive Func-

tions and Universal Machines, Bulletin of the

AMS 21, No. 1, Pp. 1–46, 1989.

G. E. Collins and R. Loos, Real Zeros of Poly-

nomials, in: B. Buchberger, G. E. Collins, and

493

R. Loos (eds.), Computer Algebra, Springer-

Verlag, Wien, 1983, pp. 83-94.

[4] M. Grotschel, L. Lovasz and A. Schrijver, Ge-

ometric Algorithms and Combinatorial Opti-

mization, Springer-Verlag, Berlin, 1988.

[5] K. Ireland and M. Rosen, A Classica/ intro-

duction to Modern Number Theory, Springer-

Verlag, New York, 1972.

[6] N. Karmarkar, A New Polynomial Time Algo-

rithm for Linear Programming, Combinator-

ics 4, pp. 373–395, 1984.

[7] L. Khachiyan, A Polynomial Algorithm in Lin-

ear Programming, Soviet Mathematics Dok-

lady 20, pp. 191-194, 1979.

[8] R. Loos, Computing in Algebraic Extensions,

in: B. Buchberger, G. E. Collins, and R. Loos

(eds.), Computer Algebra, Springer-Verlag,

Wien, 1983, pp. 173-187.

[9] L. Lovasz, An Algorithmic Theory of Num-

bers, Graphs and Convexity, Society for Indus-

trial and Applied Mathematics, Pennsylvania,

1986,

[10] N. Megiddo, Towards a Genuinely Polynomial

Algorithm for Linear Programming, SIAM

Journal on Computing 12, No. 2, pp. 347-353,

1983.

[11] N. Megiddo, Linear Programming in Linear

Time When the Dimension is Fixed, Journal

of the Association for Computing Machinery

31, pp. 114-127, 1984.

[12] N. Megiddo, On Solving the Linear Pro-

gramming Problem Approximately, in: J.C.

Lagarias and M.J. Todd (eds.), Contempo-

rary Mathematics 114: Mathematical Devel-

opments Arising from Linear Programming,

American Mathematical Society, 1990, pp. 35-

50.

[14] C. Norton, S. Plotkin and E. Tardos, Us-

ing Separation Algorithms in Fixed Dimen-

sion, Proceedings of the Ist ACM/SIAM Sym-

posium on Discrete Algorithms, pp. 377-387,

1990.

[15] C. H. Papadimitriou and K. Steiglitz, Com-

binatorial Optimization, Prentice-Hall, Inc.,

New Jersey, 1982.

[16] H. Pollard and H. G. Diamond, The Theory of

A/gebraic Numbers, 2nd Edition, The Mathe-

matical Association of America, 1975.

[17] I. N. Stewart and D. O. Tall, Algebraic Number

Theory, Chapman and Hall, New York, 1987.

[18] A. B. Shidlovskii, Transcendental Numbers,

Walter de Gruyter & Co., Berlin, 1989.

[19] E. Tardos, A Strongly Polynomial Algorithm

to Solve Combinatorial Linear Programs, (op-

erations Research 34, pp. 250–256, 1986.

[20] J. F. Traub and H. Wozniakowski, Complexity

of Linear Programming, Operations Research

Letters 1, pp. 59-62, 1982.

[13] M, Mignotte, Some Useful Bounds, in: B.

Buchberger, G. E. Collins, and R. Loos (eds.),

Computer Algebra, Springer-Verlag, Wien,

1983, pp. 259–263.

494

