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In dealing with a linear complementarity problem, much depends

on knowing that the matrix, through which the particular LCP is

defined, belongs to a suitable matrix class. Two such classes are SU

– the so-called sufficient matrices – and L which were introduced

in [R.W. Cottle, J.-S. Pang, V. Venkateswaran, Sufficientmatrices and

the linear complementarity problem, Linear Algebra Appl. 114/115

(1989) 231–249; B.C. Eaves, The linear complementarity problem,

Manage. Sci. 17 (1971) 612–634], respectively. In an earlier article [I.

Adler, R.W. Cottle, S. Verma, Sufficient matrices belong to L, Math.

Prog. 106 (2006) 391–401], the authors proved that SU is a subclass

ofL. Bydefinition, theclassSU is the intersectionof twodistinct clas-

ses:RSU, the rowsufficientmatrices, andCSU, the columnsufficient

matrices. In the present work, we strengthen the aforementioned

inclusion by showing that all row sufficient matrices belong to L.

Usingwhatwe call “structural properties” of certainmatrix classes,

we add to the existing characterizations of RSU in [R.W. Cottle, S.-

M. Guu, Two characterizations of sufficientmatrices, Linear Algebra

Appl. 170 (1992) 65–74; S.-M. Guu, R.W. Cottle, On a subclass of P0 ,

Linear Algebra Appl. 223/224 (1995) 325–335; H. Väliaho, Criteria

for sufficient matrices, Linear Algebra Appl. 233 (1996) 109–129].

This line of inquiry was inspired by asking: what must be true of a

row sufficient L-matrix? We establish three new characterizations

ofRSU in terms of thematrix classes L, E0 , andQ0 and the structural

properties of sign-change invariance, completeness, and fullness.

The new characterizations of RSU provide new characterizations of

SU by adjoining a fourth structural property we call reflectiveness.
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1. Introduction

Matrix classes play a prominent role in the theory of the Linear Complementarity Problem (LCP). At

the center of the present investigation is the classRSU of row sufficientmatriceswhichwas introduced

in [9] and later characterized in [7,13,19]. The importance of this class is underscored by its connection

with the existence of solutions as well as the applicablity of Lemke’s Method [15] and the Principal

PivotingMethod [6,3] for constructively solving instances of such LCPs. Sharing the spotlight withRSU

is the class L introduced by Eaves [10]. The present group of authors explored these two classes in

[1]. There, we showed that if a matrix M and its transpose belong to RSU, then it must belong to L.

In the present paper we strengthen that theorem by establishing the (proper) inclusion of the entire

class RSU in L. This raises the question: Given that a matrixM belongs to L, what more mustM satisfy

to belong to RSU? Our responses to this and other such questions employ what we call “structural

properties” of certain matrix classes. Four of these structural properties play important parts in the

development.

Our answer to the question posed above is that RSU is precisely the class of fully-completely-L

matrices. While researching and demonstrating this characterization, it became natural to ask similar

questions about other classes that contain RSU. This investigation led to the identification of new

matrix classes, structural properties, matrix class inclusions, and further characterizations of RSU.

2. Notation and terminology

In this section we assemble the definitions and notations needed for reading the paper. Most (but

not all) of these can be found in [8].

The Linear complementarity problem can be stated as follows: given M ∈ Rn×n and q ∈ Rn, find a

vector z ∈ Rn such that

z � 0, (1)

q + Mz � 0, (2)

zT(q + Mz) = 0. (3)

We denote this system by the pair (q,M). A vector z satisfying (1) and (2) is said to be feasible, and the

set of all feasible vectors for the LCP (q,M) is denoted FEA(q,M). The solution set of (q,M) is denoted

SOL(q,M). LCPs of the form (0,M) are called homogeneous. Because they are of special interest, we

denote the set of nonzero z ∈ SOL(0,M) by SOL+(0,M).

For any nonzero vector z ∈ Rn, the (nonempty) index set σ(z) = {i : i ∈ {1, 2, . . . ,n}, zi /= 0} is called
the support of z.

2.1. Principal transformations

An equivalent formulation of (q,M) is the system

w = q + Mz, (4)

w, z � 0, (5)

zTw = 0. (6)

ForM ∈ Rn×n and every α ⊆ {1, 2, . . . , n} there is a corresponding principal submatrix ofM denoted

Mαα formed by taking the elements mij of M that come from the rows i ∈ α and columns j ∈ α. The

determinant of a principal submatrix is called a principal minor ofM. When the principal submatrix is

nonsingular (principal minor is nonzero), there is a corresponding principal pivotal transformation of

the system given by[
Mαα Mαβ

Mβα Mββ

]
℘α−→

[
M−1

αα −M−1
αα Mαβ

MβαM
−1
αα Mββ − MβαM

−1
αα Mαβ

]
(7)
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and [
qα

qβ

]
℘α−→

[ −M−1
αα qα

qβ − MβαM
−1
αα qα

]
, (8)

where β denotes the complement of the index set α.

Such an operation is called principal pivoting; the matrixMαα is called the pivot block. The operator

℘α acts on the data in the system (4). Accordingly, the LCP (q,M) goes into the LCP ℘α(q,M) = (q̄,M)

where q̄ is givenby the right-hand sideof (8) andM is givenby the right-hand sideof (7). It is convenient

to allow the abuse of language M = ℘α(M) and q̄ = ℘α(q).

The system (4) can be expressed in slightly greater detail as

wα = qα + Mααzα + Mαβzβ , (9)

wβ = qβ + Mβαzα + Mββzβ . (10)

We may think of ℘α(q,M) as the data we would obtain by solving the system (4) for the subvector zα

in terms of wα and zβ and then substituting the latter expression for zα in (10).

Another commonly used operation is called principal rearrangement. This involves permutation of

the rows and columns of the data of an LCP. Thus, if P is a permutation matrix, the corresponding

principal rearrangement sends (q,M) into (Pq, PMPT). These two LCPs are equivalent with respect to

feasibility and solvability. Using a suitable permutation P, we can regard any principal submatrix ofM

as the corresponding leading principal submatrix of PMPT.

2.2. Classes of matrices

The following are criteria for an n × nmatrixM to belong to one of the subclasses ofRn×n appearing
in this study. For a comprehensive list of matrix classes in the LCP, see [5].

M ∈ P0 iff all its principal minors are nonnegative.

M ∈ PSD iff zTMz � 0 for all z.
M ∈ CSU (is column sufficient) iff zi(Mz)i � 0 for all i = 1, 2, . . . ,n implies that

zi(Mz)i = 0 for all i = 1, 2, . . . ,n.

M ∈ RSU (is row sufficient) iffMT ∈ CSU.
M ∈ SU (is sufficient) iffM ∈ RSU ∩ CSU.
M ∈ E0 (is semimonotone) iff for every 0 /= z � 0 there exists some i such that

zi > 0 and (Mz)i � 0.
M ∈ E1 iff for every vector z ∈ SOL+(0,M), there exists non-negative diagonal

matrices � and � such that �z /= 0 and (�M + MT �)z = 0.
M ∈ L iff M ∈ E0 ∩ E1.
M ∈ Q0 iff FEA(q,M) /= ∅ implies SOL(q,M) /= ∅.
M ∈ Q+

0
iff M ∈ Q0 and all the diagonal elements of M are nonnegative.

M ∈ T (has property (T)) iff for every nonempty subset α ⊂ {1, 2, . . . ,n} the
existence of a solution to the system
Mααzα � 0, Mβαzα � 0, zα > 0
implies the existence of a vector yα such that

(Mαα)Tyα = 0, (Mαβ)Tyα � 0, 0 /= yα � 0.

A few remarks about these classes are in order. Regarding the class SU, it is known [20] that SU = P∗,
the latter being a matrix class introduced in [14] and having an entirely different sort of definition.

Nonetheless, it was shown in [1] that SU ⊂ L. This inclusion did much to stimulate the questions

studied in the present paper. It is a simple consequence of the definition ofQ0 that a matrixM belongs

to Q0 if and only if the union of the complementary cones (see [17,8, p. 17]) corresponding to M is

convex. (We invoke this fact in one of our results.) The class Q+
0

is a new specialization of a familiar

matrix class. The class T is just a formalization of the class of matrices having an equivalent version of

property (T) which first appeared in [2].
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2.3. Structural properties of classes of matrices

Section 1 alluded to four structural properties of some matrix classes that play a key role in our

results. We define them now using the symbol Y to denote a generic class of square matrices.

Sign-change invariance. A matrix M belonging to a class Y is said to be sign-change invariant-Y if

the matrix SMS ∈ Y for every diagonal matrix S such that S2 = I, the identity matrix. The class of all

sign-change invariant-Y matrices is denoted Ys. To say that Y is a sign-change invariant class means

that Y = Ys.

Completeness. A matrix M belonging to a class Y is said to be completely-Y if every principal

submatrix ofM also belongs to Y. The class of all completely-Ymatrices is denoted Yc . To say that Y is

a complete class means that Y = Yc .

Fullness. A matrix M belonging to a class Y is said to be fully-Y if for every nonsingular principal

submatrix ofM the associated principal pivotal transform ofM also belongs to Y. The class of all fully-Y

matrices is denoted Yf . To say that Y is a full classmeans that Y = Yf .

Reflectiveness. A matrix M belonging to a class Y is said to be reflectively-Y if MT ∈ Y. The class of

all reflectively-Ymatrices is denoted Yr . To say that Y is a reflective classmeans that Y = Yr .

Remark 2.1. The matrix class P0 possesses all four of these structural properties, but this cannot be

said of all the classes in our list above. An important case in point is the class RSU which, in addition

to being a subclass of P0 ∩ Q0, possesses all but the fourth property, reflectiveness. However, the class

SU of sufficient matrices is just RSUr .

Remark 2.2. The properties of completeness and fullness for matrix classes have a solid place in the

literatureof linear complementarity. The symbolYc usedhere to indicate the completely-Ymatrix class

is a departure from the traditional notation Y. The new notation gives greater stylistic consistency to

our presentation.

Remark 2.3. For amatrix classY, the notationYcf is read “fully-completely-Y,”meaning (Yc)f , the class

of all completely-Y matrices that are invariant under principal pivoting. In general, the application of

more than one such superscript should be interpreted from left to right. It is not always the case that

the superscripts “commute”, but, thanks to R.E. Stone [18], for any matrix class Y, we can demonstrate

the validity of the inclusions shown in the following diagram.

3. Preliminary results on classes of matrices

The following is apparently a well known result for which we failed to find a clear reference.

Proposition 3.1. The class E0 is complete.

Proof. LetM ∈ Rn×n ∩ E0. We have to show that every proper principal submatrix ofM belongs to E0.

It is clear that all the diagonal elements ofM are nonnegative and that regarded as 1 × 1matrices, they

belong to E0. We now consider an arbitrary p × p principal submatrix Mαα of M where 1 < p < n. We

may assume without loss of generality that α = {1, . . . , p}. Now take an arbitrary nonzero nonnegative

p-vector zα . Extending zα to the nonzero nonnegative n-vector z = (zα , 0), we see that there exists an

index i such that zi > 0 and (Mz)i � 0. Since i must belong to α, it follows that Mαα ∈ E0. Hence E0 is

complete. �
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Our next objective is to prove that the class E1 is full. This requires showing that every principal

pivotal transform of an E1-matrix is another E1-matrix.

Consider the equation

w = Mz (11)

and letMαα be a nonsingular principal submatrix ofM. Then it is possible to execute a principal pivot

transformation℘α usingMαα as the pivot block. It is convenient, but not restrictive, to assume thatMαα

is a leading principal submatrix of M. Then, letting M = ℘α(M), we can write the transformed system

as

w̄ = Mz̄, (12)

where

w̄ = (zα ,wβ) and z̄ = (wα , zβ). (13)

Remark 3.2. Throughout this paper we regard all vectors as columns. The representation such as that

of w̄ and z̄ in (13) is meant to avoid transposes and save vertical space.

Next we state an alternative characterization of the class E1 which, in essence, was made long ago

by Garcia [12].

Proposition 3.3. If M ∈ Rn×n, then M ∈ E1 if and only if for every z ∈ SOL+(0,M), there exists a vector y

such that:

(a) MT y � 0, 0 /= y � 0;
(b) σ(y) ⊆ σ(z);
(c) σ(MT y) ⊆ σ(Mz).

Before coming to the previously announced result on the fullness of E1, we recall and extend a few

notions from the literature. In [1, p. 394], we defined – for any M ∈ Rn×n – the polyhedral cone

T(M) = FEA(0,−MT).

We observed that

SOL(0,−MT) ⊆ FEA(0,−MT) = T(M).

To capture the nonzero elements of T(M), we now write T+(M). The vector y in condition (a) of the

above proposition is such an element.

We pause a little longer to point out that when Mαα is a nonsingular principal submatrix of an

arbitrary square matrixM (not necessarily in E1), it is not generally true that (℘α(M))T and ℘α(MT) are

the same matrix. This can be seen by considering the case of a nondiagonal 2 × 2 matrix. As found in

[3, Theorem 1], the correct relationship is given by the formula

(℘α(M))T = Sβ(℘α(MT))Sβ (14)

where Sβ denotes the diagonal sign-changing matrix with entries

sij =
⎧⎨
⎩
0 if i /= j

1 if i = j ∈ α

−1 if i = j ∈ β

We are now in a position to state and prove

Proposition 3.4. The class E1 is full.

Proof. Let Mαα be a nonsingular principal submatrix of the n × n matrix M ∈ E1, and let M = ℘α(M).

We have to show that if z̄ ∈ SOL+(0,M), then there exists a vector ȳ ∈ T+(M) such that
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σ(ȳ) ⊆ σ(z̄), (15)

σ
(
M

T
ȳ
)

⊆ σ(Mz̄). (16)

We define w̄ = Mz̄. By pivoting on Mαα we obtain a nonzero solution z of (0,M). In more detail, we

have

w = Mz, w � 0, z � 0, zTw = 0,

withw = (wα ,wβ) = (z̄α , w̄β) and z = (zα , zβ) = (w̄α , z̄β). Furthermore, sinceM ∈ E1, there exists a vec-

tor y ∈ T+(M) such that

σ(y) ⊆ σ(z), (17)

σ
(
MTy

)
⊆ σ(Mz). (18)

By pivoting on (MT)αα in the system

x = MT y, x � 0, y � 0 (19)

we obtain

x̃ = (
MT

)
ỹ = Sβ

(
M

T
)
Sβ ỹ.

Because (Sβ)2 = I, we have

Sβ x̃ =
(
M

T
)
Sβ ỹ.

From the principal pivot done in (19), we have

x̃ = (yα , xβ), ỹ = (xα , yβ).

Thus,

Sβ x̃ = (yα ,−xβ), Sβ ỹ = (xα ,−yβ).

Now, defining

x̄ = −Sβ x̃ = (−yα , xβ),

ȳ = −Sβ ỹ = (−xα , yβ),

we obtain a vector ȳ ∈ T+(M
T
). That is, x̄ = M

T
ȳ, x̄ � 0, ȳ � 0 and ȳ /= 0 since y /= 0. Moreover, by the

sequence of definitions and the inclusions (17), (18), it follows that the required inclusions (15) and

(16) are satisfied. HenceM ∈ E1. �

In thenext sectionwewill apply the followingproposition, characterizingP0 ∩ Q0, which succinctly

paraphrases the main result of [2, see p. 230].

Proposition 3.5. P0 ∩ Q0 = P0 ∩ Tf .

4. New characterizations of RSU

Our objective in this section is to provide three new characterizations of RSU. To show that M

belongs to RSU, it suffices to prove that every one of its principal pivotal transforms is “RSU of order

2.” It will be helpful to make the terminology more precise by recalling the

Definition. Let Y be a class of square matrices of all orders n � 1. An n × n matrix M is said to be Y

of order r, 1 � r � n, if every r × r principal submatrix of M belongs to Y. When r = n, this statement

refers to the matrixM itself. We denote the class of all matrices that are Y of order r by Y[r].
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In the following, we shall invoke the following characterization theorems of Cottle and Guu [7].

Theorem 4.1. The matrix M ∈ Rn×n is row sufficient if and only if every one of its principal pivotal trans-

forms is row sufficient of order 2.

Theorem 4.2. The matrix N ∈ R2×2 is row sufficient if and only if for every principal pivotal transform N

of N :

(i) N ∈ P0;
(ii) no principal rearrangement of N has the form[

a 0

b 0

]
where b /= 0 � a.

The class RSU is well known to contain some important matrix classes, See [4, p. 246]. Now, as

a method for obtaining new characterizations of RSU, we identify several other subclasses of row

sufficient matrices.

4.1. First characterization: RSU = Lcf

Theorem 4.3. P0 ∩ Ecf
1

⊂ RSU.

Proof. Let M ∈ P0 ∩ Ecf
1

. If n = 1, then M must be PSD and hence in RSU. Suppose n � 2, then since

P0 ∩ Ecf
1

= (P0 ∩ E1)
cf , we have that the principal pivoting transformation M of any 2 × 2 principle

submatrix N of a principal transformation of M is in P0 ∩ E1 ⊂ E0 ∩ E1 = L ⊂ Q0 ∩ E1. Thus, in view

of Theorems 4.1 and 4.2, all we need to show is that the forbidden sign pattern (Theorem 4.2(ii))

cannot arise in Q0 ∩ E1. Appropriately, this can be seen from the following two facts: If b > 0, the

matrix M /∈ Q0 as the union of the complementary cones corresponding to M is nonconvex. If b < 0,

thematrixM /∈ E1, for if z ∈ SOL+(0,M), then z 	 (0,+)1. Let� and�benonnegativediagonalmatrices

of order 2which togetherwith z satisfy the conditions guaranteed by themembership ofM in E1. Then

we have �Mz = 0 and �z = (0,ω2) 	 (0,+). Thus,

0 = (�M + MT�)z = MT�z 	 (−, 0) /= 0,

a contradiction. �

It is shown in [16] that R2×2 ∩ Ef
0

= R2×2 ∩ P0. Thus, since Ef
0

∩ Ecf
1

⊆ Q0, we can use the proof of

the preceding theorem to deduce

Corollary 4.1. Ef
0

∩ Ecf
1

⊆ RSU.

Noting that

Ef
0 ∩ Ecf

1 = Ecf
0 ∩ Ecf

1 = (E0 ∩ E1)
cf = Lcf ,

we obtain

Corollary 4.2. Lcf ⊆ RSU.

Next, we establish the reverse inclusion, namely that RSU ⊆ Lcf .

Since the class RSU is both complete and full and in view of Corollary 4.1 it will be sufficient to

show that RSU ⊂ L (strengthening our previous result [1] that SU ⊂ L). The key to this is the following

lemma.

1 We use the symbol “	” to mean “has the sign pattern”.
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Lemma 4.1. Ts ⊂ E1.

Proof. If SOL+(0,M) = ∅, there is nothing to prove. Assume z ∈ SOL+(0,M). Let α = σ(z) and let {γ , δ}
be a partition of β (the complement of α) such that Mγαzα = 0 and Mδαzα > 0. Let ν ⊆ γ , and let Dν

denote the n × n sign-changing matrix whose negative diagonal elements are in the rows indexed by

ν. Since z ∈ SOL+(0,DνMDν) andM ∈ Ts, there exists a vector yν
α satisfying the system

((DνMDν)αα)T yν
α = 0, ((DνMDν)αγ )T yν

α = 0,

((DνMDν)γ δ)
T yν

α � 0, 0 /= yν
α � 0.

When the definition of ν and the associated matrix Dν are taken into account, the above system can

be written as

(Mαα)Tyν
α = 0, (20)

(Mαδ)
T yν

α � 0, (21)

Sν(Mαγ )T yν
α � 0, (22)

0 /= yν
α � 0 (23)

(where Sν denotes the diagonal submatrix of Dν corresponding to the index set α).

Let G denote the set of all nonempty subsets of γ . Given a set of solutions yν
α to system (20)–(23)

for all ν ∈ G (as guaranteed by the membership ofM in Ts), we claim that there exist scalars λν(ν ∈ G)

that solve the system∑
ν∈G

λν = 1, λν � 0 for all ν ∈ G, (Mαγ )T
∑
ν∈G

yν
αλν = 0. (24)

Suppose to the contrary that system (24) has no solution. Then the corresponding homogeneous

system has no nonzero solution. Accordingly, it follows from Gordan’s theorem of the alternative (see

[8, Section 2.7.10]) that there exists a vector u such that

uT (Mαγ )T yν
α < 0 for all ν ∈ G. (25)

Now, let μ be the set of indices i ∈ γ for which ui > 0; then uT Sμ � 0. In light of (22) this leads to

0 � uT SμSμ(Mαγ )T yμ
α = uT(Mαγ )T yμ

α ,

contradicting (25). Thus, letting yα = ∑
ν∈G yν

αλν and exploiting (20) and (21) we have

(Mαα)T yα = 0, (Mαγ )T yα = 0, (Mαδ)
T yα � 0, 0 /= yα � 0.

Finally, setting y = (yα , 0) completes the proof. �

Lemma 4.1 leads to the aforementioned strengthening of the inclusion SU ⊂ L.

Theorem 4.4. RSU ⊂ L.

Proof. It is well known (see [8]) that RSU ⊂ P0 ∩ Q0; thus, in view of Proposition 3.5 and the fact

that P0 ∩ Tf ⊂ P0 ∩ T, we know that RSU ⊂ T. From Lemma 4.1 and the easily verified fact that RSU is

sign-change invariant, we have RSU ⊂ E1. Finally, the fact that RSU ⊂ P0 ⊂ E0 establishes that

RSU ⊂ E0 ∩ E1 = L. �

Now, we are in a position to prove our first characterization of the class RSU

Theorem 4.5. RSU = Lcf .

Proof. Noting that the class RSU is both complete and full and considering Theorem 4.4, we have

RSU ⊆ Lcf . Corollary 4.2 completes the proof. �
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4.2. Second characterization: RSU = (E0 ∩ Q0)
s

Theorem 4.6. (P0 ∩ Q0)
s ⊆ RSU.

Proof. Let M ∈ Rn×n ∩ (P0 ∩ Q0)
s. If n = 1, then M must be PSD and hence in RSU. Suppose n � 2;

then P0 ∩ Qs
0

= (P0 ∩ Q0)
s. Suppose thatM /∈ RSU, then by Theorems 4.1 and 4.2 there exist a principal

pivot transformation (possibly principally rearranged)M ofM and a δ ⊂ {1, 2, . . . ,n}, with |δ| = 2, such

that

Mδδ =
[
0 b

0 a

]
b /= 0 � a.

In fact, it is not restrictive to assume δ = {1, 2}.
In the followingweshall use the characterizationofP0 ∩ Q0 as introducedbyAganagic andCottle [2]

to showthatM cannotbelong toP0 ∩ Q0. Letγ = {3, 4, . . . ,n}, and letρ = {2, 3, . . . ,n}. SinceM belongs to

the full class (P0 ∩ Q0)
s, we can assume,without loss of generality, thatM12 = b > 0 and thatMγ1 � 0.

(Pre- and post-multiplication by a suitable sign-changing matrix will make the assumed inequalities

hold.) Now, consider z1 = 1. Then we have, m̄11z1 = 0 andMρ1z1 � 0. Thus, sinceM ∈ P0 ∩ Q0 and by

[2], there should exist y1 > 0 such that y1m̄11 = 0 and y1[m̄11 m̄12 · · · m̄1n] � 0. However, the preceding

inequality is impossible since m̄12 = b > 0. Hence M ∈ RSU. �

Using a characterization of P0 due to Fiedler and Pták [11] (specifically [8, Theorem 3.4.2 (b)]), it is

easy to prove that Es
0

= P0. Hence Theorem 4.6 leads to the

Corollary 4.3. (E0 ∩ Q0)
s ⊆ RSU.

Theorem 4.7. RSU = (E0 ∩ Q0)
s.

Proof. Considering the definition of the class L, the well known result (see [10]) that L ⊂ Q0, and

Theorem 4.4, we have

RSU ⊆ L = E0 ∩ E1 ⊆ E0 ∩ Q0.

Noticing that the class RSU is sign-change invariant and considering Corollary 4.3, we conclude that

RSU = (E0 ∩ Q0)
s. �

4.3. Third characterization: RSU = ((Q+
0

)sf )[2]

A key to the third characterization is the following

Lemma 4.2. R2×2 ∩ (Q+
0

)sf ⊆ P0.

Proof. LetM =
[
a b
c d

]
with a, d � 0 and suppose M /∈ P0, that is, ad − bc < 0.

Case i: a + d > 0. Then the 2 × 2 principal pivot on M yields

M−1 = 1

ad − bc

[
d −b

−c a

]
,

where at least one entry of the diagonal ofM−1 is negative, so M /∈ (Q+
0

)f .

Case ii: a = d = 0. Here bc > 0. If b, c > 0, then it can be easily verified that M /∈ Q0. On the other

hand, if b, c < 0, then SMS with S =
[
1 0
0 −1

]
has the two off diagonal entries positive, so M /∈ Qf

0
. �

Corollary 4.4. R2×2 ∩ (Q+
0

)sf = R2×2 ∩ RSU.
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Proof. We have

R2×2 ∩ (Q+
0

)sf ⊆ P0 ∩ Qf
0 ⊆ RSU, (26)

where the first inclusion is justified by Lemma 4.2 and by observing that (Q+
0

)sf ⊆ Q0; the second

inclusion follows from Theorem 4.6.

On the other hand, since the diagonal entries of a P0 matrix are nonnegative, we have

RSU ⊆ P0 ∩ Q0 ⊆ Q+
0

which (since RSU is both sign-change invariant and full) implies that

RSU ⊆ (Q+
0

)sf . (27)

Combining (26) and (27) we conclude that

R2×2 ∩ (Q+
0

)sf = R2×2 ∩ RSU. �

Theorem 4.8. RSU = ((Q+
0

)sf )[2]

Proof. The proof is easily obtained by considering Theorem 4.1 and Corollary 4.4. �

From this characterization theorem, we obtain the

Corollary 4.5. ((Q+
0

)sf )[2] = (Q+
0

)csf .

Proof. By definition, ((Q+
0

)sf )[2] ⊆ (Q+
0

)csf . Now if M ∈ ((Q+
0

)sf )[2], then it must belong to RSU. Hence

M and all its principal pivot transforms are sign-invariant and complete. ThereforeM ∈ (Q+
0

)csf . �

5. Conclusions

In this paper we have given three new characterizations of RSU, the class of row sufficient matri-

ces. In the process, we have shown that RSU ⊂ L; this strengthens the main result of [1]. Our char-

acterizations of RSU are expressed in terms of three structural properties (sign-change invariance,

completeness, and fullness) and three other well known matrix classes: L, E0, and Q0. A fourth struc-

tural property, reflectiveness, when coupled with the new characterizations of RSU, gives three new

characterizations of SU = RSUr:

SU = Lcfr = (E0 ∩ Q0)
sr = ((Q+

0
)sf )[2])r .

In the course of establishing these characterizations, we have revealed a number of other interesting

matrix class inclusions. It is conceivable that the applicationof structural properties such as those iden-

tifiedherewill lead tobetterunderstandingofmatrix classes in the studyof the linear complementarity

problem and other topics.
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