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This paper describes data structures and programming techniques used in an implementation of Karmarkar’s
algorithm for linear programming. Most of our discussion focuses on applying Gaussian elimination toward the
solution of a sequence of sparse symmetric positive definite systems of linear equations, the main requirement in
Karmarkar’s algorithm. Our approach relies on a direct factorization scheme, with an extensive symbolic
Jactorization step performed in a preparatory stage of the linear programming algorithm. An interpretative version
of Gaussian elimination makes use of the symbolic information to perform the actual numerical computations at
each iteration of algorithm. We also discuss ordering algorithms that attempt to reduce the amount of fill-in in
the LU factors, a procedure to build the linear system solved at each iteration, the use of a dense window data
structure in the Gaussian elimination method, a preprocessing procedure designed to increase the sparsity of the
linear programming coefficient matrix, and the special treatment of dense columns in the coefficient matrix.

All variants of Karmarkar’s algorithm for linear pro-
gramming ®! are closely related with respect to their
main computational requirement—the solution of a
sequence of sparse symmetric positive definite systems
of linear equations with strong structural and numerical
correlation. A typical example of such systems is the
sequence that arises in the dual-affine scaling variant
of Karmarkar’s algorithm!"

(AD3ATYd, = b, (1)

where A is a sparse m X n matrix, Dy is a positive
diagonal m X m matrix, and d, and b are m-vectors. In
the above system, the diagonal matrix changes from
iteration to iteration while 4 remains fixed. A successful
implementation of Karmarkar’s algorithm depends on
an effective variant of the method, and on specialized
data structures and programming techniques to handle
the sequence of linear systems.

A wealth of solution methods for solving large
sparse systems of linear equations has been developed,

most of them falling under two categories:

(i) Direct methods involve the factorization of the
system coefficient matrix, usually obtained through
Gaussian elimination. Implementations of meth-
ods in this class require the use of specific data
structures and special pivoting strategies, in an
attempt to reduce the amount of fill-in during
Gaussian elimination. Notable examples of soft-
ware using this type of technique are SPARSPAK, !
ysmp!'! and Ma27.89

(ii) Iterative methods generate a sequence of approxi-
mate solutions to the system of linear equations,
usually involving only matrix-vector multiplica-
tions in the computation of each iterate. Methods
like Jacobi, Gauss-Seidel, Chebychev, Lanczos (see
[19] for a description of these methods) and the
conjugate gradient are attractive by virtue of their
low storage requirements, displaying, however,
slow convergence unless an effective preconditioner
is applied.
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These two approaches are not necessarily disjoint, as
advanced implementations of iterative methods are
hybrid schemes, typically based on the conjugate gra-
dient algorithm, with a preconditioner computed by
techniques similar to Gaussian elimination. In most
implementations of this procedure, the conjugate gra-
dient method is used to solve the resulting system of
equations that hopefully displays a more favorable ei-
genvalue structure.

The relative merits of each approach depends on
such factors as the characteristics of the problem and
the host machine. Size, density, nonzero pattern, range
of coefficients, structure of eigenvalues and desired
accuracy of the solution are some of the problem attri-
butes to be considered. Beyond simple characteristics
as speed and size of memory, other aspects of the host
machine’s architecture play a decisive role both in the
selection of a solution method and in specific imple-
mentation details. Recent research in sparse matrix
techniques concentrate on specializing algorithms that
can achieve the most benefit from parallelism, pipelin-
ing or vectorization. Also important in the comparison
of the two approaches in implementations dedicated to
a specific machine is the data transfer rates between
various memory media, like disk, main memory, cache
memory and register files.

The main purpose of this paper is to present data
structures and programming techniques for an imple-
mentation of Karmarkar’s algorithm that makes use of
direct factorization at each iteration. In this context,
the systems of linear equations are solved via an inter-
pretative Gaussian elimination scheme for direct fac-
torization. We illustrate our approach on the dual-affine
variant of Karmarkar’s algorithm. Since most variants
of Karmarkar’s algorithm share the same main com-
putational step, the techniques described here can be
applied to other implementations using the direct fac-
torization approach, as well as to building the precon-
ditioner in hybrid methods. We limit our discussion to
implementations on sequential computer architectures.
Others »17-28.30.32.411 have discussed implementations
of variants of Karmarkar’s algorithm but have not
considered many of the issues treated in this paper.

Throughout this paper, we describe algorithms in
a pseudo-code similar to the one used by Tarjan.®!
Our intention is to express the algorithms in a compact
notation that conveys the operations in detail, without
obscuring them with the minutiae required by an actual
programming language. In Section 1, we reintroduce
Algorithm I of Adler et al.!"! and present the static data
structures for the linear programming coefficient ma-
trix. In Section 2, we review the algebraic aspects of
Gaussian elimination for symmetric dense matrices,
and introduce a basic version of the procedure for sparse
matrices. The importance of reordering the rows and
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columns of a system of linear equations is the subject
of Section 3. Different orderings can result in lower fi/l-
in in the LU factors and lower number of operations in
the Gaussian elimination procedure. We indicate how
properties of Karmarkar’s algorithm influence the
choice of the ordering algorithm. Section 4 describes an
interpretative procedure for sparse Gaussian elimina-
tion, an important feature of the implementation of
Karmarkar’s algorithm presented in [1]. In Section 5,
we discuss how to build 4AD,?A7 at each iteration of the
linear programming algorithm. By using an approxi-
mate scaling matrix, we describe how matrix AD2A7
can be updated based on the matrix used in the previous
iteration. Section 6 discusses the use of a dense window
in the Gaussian elimination procedure to reduce the
storage requirements of the interpretative scheme. In
Section 7 we discuss preprocessing of the input coeffi-
cient matrix. We show how to identify some fixed and
null variables, some trivial cases of infeasibility and
how to reduce the density of some input coefficient
matrices. Numerical results are presented for these pre-
processing schemes. In Section 8 we discuss a procedure
for treating linear programs with dense columns in their
coefficient matrices. This procedure makes use of a
preconditioned conjugate gradient algorithm for solv-
ing the required symmetric system of sparse linear
equations at each iteration of Karmarkar’s algorithm.
A summary and conclusion are presented in Section 9.

1. Linear Program Formulation and Description
of Algorithm

Most of the discussion in this paper is based on Algo-
rithm I of Adler et al.,!'" which we reintroduce in this
section, altering the presentation slightly. This is an
implementation of the so-called dual-affine scaling var-
iant of Karmarkar’s algorithm, which is applied to
linear programs in inequality form. Since most linear
programs are formulated in standard equality form, the
algorithm is applied to the dual linear program, hence
the dual-affine designation. Instead of expressing the
linear program directly in inequality form, we consider
the following standard equality form:

P: minimize c¢’x (L.1)
subject to: Ax = b (1.2)
x=0 (1.3)

where A is the full-rank m X n linear programming
coefficient matrix, b is the m-dimensional resource
vector, ¢ is the #-dimensional objective vector, and x is
the n-dimensional primal vector.

Since Algorithm I requires problems in inequality
form and most practical problems are formulated in
equality form, we apply the algorithm to the dual
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problem of (P):
D: maximize b7y (1.4)
subject to: ATy < ¢ (1.5)

where y is the m-dimensional dual vector.

PSEUDO-CODE 1—ALGORITHM 1

procedure Algorithm I
(4, b, ¢, y°, stopping criterion, v)

1 k:=0

2 do stopping criterion not satisfied —

3 vk = ¢ — ATy%;

4 Di = diag(l/v¥, ..., 1/v.5);

5 d, ;= (AD2ATY'b;

6 d,=-A%d,;

7 a =y X minf{-v//(d,):: (d,); <0,
i=1,...,mj

8 yktli= yk + ad);

9 x**1 = D2d,;

10 k=k+ 1,

11 od

end Algorithm I;

Algorithm I, presented in Pseudo-code 1, requires
as input an interior dual feasible solution y°. However,
a nonempty feasible dual interior cannot be assured,
and an initial dual point may not be readily available,
Adler et al.l'! propose a Big M scheme. According to
this approach, an artificial variable is added to the dual
problem resulting in the following problem:

D.: maximize b7y — My, (1.6)
ATy — ey, < ¢ (1.7)

where 7 = (1, 1, ..., 1)7 and M is a large constant.
An interior dual feasible point is easily available for
problem D,. Furthermore, given a suitably large con-
stant M, solving D, either yields an optimal solution,
or indicates primal or dual infeasibility for problem D.
Theoretically, a very large value of M is required for
the statement above to hold true. Due to numerical
computation considerations, a lower value for M is
necessary. This value is determined as a function of the
problem data, effective for practical problems.
Algorithm I also requires that a stopping criterion
be defined. In the experiments reported in [l], the
algorithm terminates whenever either the relative im-
provement in the dual objective value is smaller than a
given tolerance or unboundedness of the dual is de-
tected. In theory, dual unboundedness is detected in
Algorithm I whenever the ratio test in line 7 fails. In a
practical implementation, an empirical criterion, such
as imposing an upper-bound on the dual objective
value, is used. An alternative stopping criterion uses
the tentative primal solution computed at each step

subject to:

of the linear programming algorithm, terminating if
primal feasibility and complementary slackness are
satisfied.

In a practical implementation, Algorithm I is ac-
tually used in a Phase I/Phase II scheme. Initially, the
algorithm is applied to D, with a modified stopping
criterion. In this Phase I stage, the algorithm either
identifies an interior dual feasible solution, or, if no
such solution exists, finds a point that satisfies the
stopping criterion for problem D. With ¢ defined as
the feasibility tolerance, the modified stopping criterion
for Phase I is formulated as follows:

(i) If y* < 0 at iteration k, then y* is an interior
feasible solution for problem D.

(i) If the algorithm satisfies the regular stopping cri-
terion and y,* > ¢;, D is declared infeasible.

(iii) If the algorithm satisfies the regular stopping cri-
terion and y.* < ¢, either unboundedness is de-
tected or an optimal solution is found. In this case,
D has no interior feasible solution.

If Phase I terminates according to condition (ii), Algo-
rithm I is applied to problem D, starting with the
last iterate of Phase I and using the regular stopping
criterion.

In addition to the coefficients of the linear pro-
gram, an initial dual feasible interior point and a stop-
ping criterion, Algorithm I expects as input a parameter
0 <y < 1, that determines the step size at each iteration.
At the start of each iteration, the algorithm computes
the vector of dual slacks v* (line 3) and the correspond-
ing scaling matrix Dy (line 4). The code in line 5
indicates the solution of a symmetric system of linear
equations that results in the search direction in the
space of the dual variables. Note that before solving the
system of linear equations, we must build its coefficient
matrix AD2A7. The code in line 6 computes the asso-
ciated search direction in the space of the dual slacks.
Compared to other variants of Karmarkar’s algorithm,
the dual-affine has the advantage of allowing for inexact
computation of the search direction without associated
loss of feasibility. The code in line 7 initially determines
the maximum dual feasible step, determined by the
vector of dual slacks. The actual step length is computed
by multiplying the maximum step value by a safety
factor ~. (Other proposed variations of Karmarkar’s
algorithm compute the step in each iteration by mini-
mizing a potential function on the search direction (see
[40] and [20]). The iteration is completed by updating
the dual solution (line 8) and computing the tentative
primal solution (line 9).

Closing this section, we describe the basic data
structures for storing the linear programming coeffi-
cient matrix. The storage scheme takes advantage of



the fact that none of the matrix computations in the
algorithms described in this paper require random ac-
cess of matrix elements. In fact, all operations access
matrices either by rows or by columns. Also, these are
all szatic data structures, that remain fixed throughout
the execution of our implementation of Karmarkar’s
algorithm,

The linear programming coefficient matrix A is
stored column-wise as a sequence of sparse vectors. A
pointer to the starting position of each column provides
the means for random access of an individual column.
In addition, some of the operations performed in the
preparatory stage of the algorithm require access of
rows. The easiest way to achieve this goal is to store a
duplicate representation of 4 row-wise. Within each
column, nonzero elements are stored in order of in-
creasing row index. To identify the nonzero entries in
any given column, it is necessary to traverse the col-
umn, beginning with its first element.

Figure 1 depicts the column-wise representation of
matrix 4. This data structure is composed of five arrays,
referred to by their FORTRAN designations:

.

ia contains pointers to the first entry of each column.
Component of ia(n + 1) points to the position after
the last entry in A4.

entry of A.

a contains the nonzero elements of A.

b contains the dense representation of the resource
vector b.

¢ contains the dense representation of the objective
vector c.

Since the columns are stored consecutively, the number
of nonzero elements in the column i of 4 is given by

1-[';%5\ """" ’IIJ

Figure 1. Data structure for coefficient matrix.

ja contains the row indices corresponding to each

Data Structures for Karmarkar’s Algorithm 87

ia(i + 1) — ia(7). The row-wise data structure for 4 is
the same as the column-wise data structure for 47, and
is stored in FORTRAN arrays iat, jat and at. The com-
putational benefit derived from storing the resource
vector b and the objective vector ¢ in sparse form is
insignificant. Consequently, they are stored in dense
form in FORTRAN arrays b and c, respectively.

2. Direct Factorization of Symmetric Positive
Definite Systems

In most of the recently proposed interior point algo-
rithms for linear programming, the time required to
perform an iteration is dominated by the solution of a
sparse symmetric positive definite system of linear
equations. In some instances, this system is embedded
in the solution of a least-squares problem,!'” or in the
computation of a projected gradient onto the null space
of matrix A4.

In the variant of Karmarkar’s algorithm presented
in Pseudo-code 1, the system of linear equations (2.1)
yields the search direction d, for each iteration k of the
algorithm,

(AD2ATY, = b, @2.1)

where A is the m X n linear programming coefficient
matrix, b the resource vector, Dy the scaling matrix for
iteration k, and d, the resulting search direction in the
space of the dual variables. Under the full-rank as-
sumption for 4, system (2.1) is symmetric and positive
definite. There is a sharp division of solution techniques
depending on whether a system of equations is sym-
metric positive definite or not. Direct methods designed
for the solution of symmetric positive definite systems
do not require numerical pivoting for stability.!'¥) As a
consequence, in the case of sparse systems, as discussed
in Sections 3 and 4, we can order the matrix and
perform the symbolic factorization step based solely
on the nonzero pattern, without regard to the actual
numerical values.

In this section, we describe the algebraic procedure
for the direct solution of a symmetric positive definite
system of linear equations. Gaussian elimination and
other equivalent methods for solving systems of linear
equations consist of obtaining an LU decomposition of
the system matrix, followed by the solution of two
triangular systems of equations (see [10], [14], and [19]
for a complete treatment of this subject). Also, consid-
erations of sparsity are paramount in the practical
implementation of Gaussian elimination. We present,
in the end of this section, a basic implementation of a
sparse symmetric Gaussian elimination procedure.

Consider system (2.1) that determines the feasible
search direction computed in each iteration k of Algo-
rithm I. Rewriting (2.1) in a more compact form
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we have:
Bd, = b, (2.2)
with
Bi = ADSA™. (2.3)

Even in the unsymmetric case, such systems of linear
equations are usually solved by means of the LU fac-
torization,

B.= LU, (2.4)

where L is an m X m unit lower triangular matrix (a
matrix that has exclusively ones in its main diagonal),
and U is an m X m upper-triangular matrix. Using (2.2)
and (2.4) we have

(LU)dy = b. 2.5

In the case of positive definite matrices, this LU facto-
rization always exists and is unique. Note that if the
system is also symmetric, the factor L can be trivially
obtained from U with

L =Dy'UT, (2.6)

where Dy is a diagonal matrix with elements drawn
from the diagonal of U. Furthermore, the LU factors
are related to the Cholesky factors as follows:

L = (Dy)' L, @2.7)
and
LT = (Dy)y?U (2.8)

where L and L7 are the Cholesky factors of Bx. In some
circumstances, we need the symmetry displayed by the
Cholesky factors, as in the computation of symmetric
preconditioners for the conjugate gradient method de-
scribed in Section 8. Otherwise, the LU factorization,
which does not involve square root calculations, is
preferred.

Conceptually, solving system (2.5) is equivalent to
solving two triangular systems of linear equations. In a
first step, we perform a forward substitution, solving

Lz =, (2.9

where z is an m-vector. This is followed by a back
substitution, solving

Ud, = z. (2.10)

This version of the Gaussian elimination proce-
dure is equivalent to applying row transformations to
the upper-triangular portion of By. After m — 1 itera-
tions, the upper-triangular matrix is transformed into
U. We start with the m X m matrix

U® = upper(Bs). .11

where upper(By) denotes the upper-triangular portion
of By, including the diagonal elements. In each iteration
g of the Gaussian elimination procedure, we perform
an elementary transformation that creates zeros in the
lower triangular portion of column g of U9,

U(a) o= L(q)U(q—l), (2‘12)
where
M1 .
)] L
Lo = s ,(213)
| a1
and
lig=u2/u, (2.14)
with #{? denoting element (i, j) of U‘®. For symmetric

positive definite systems, #{) > 0 and the operation in

(2.14) is well defined. After m — 1 iterations, we obtain
the upper-triangular factor

U=UmD=L=bpm=2  1OyO®  (2.15)
The unit lower triangular factor can be expressed as
L= @O . @y (2.16)

PSEUDO-CODE 2—SYMMETRIC
GAUSSIAN ELIMINATION

procedure SGE(m, A, U)

1 forg=1,....m—1—

2 fori=q+1,..., m—

3 Ui i= Uy — uii/uqq;

4 forj=i+1,...,m—
2 Uyj = Uiy — UqjUgif Ugq)

rof
7 rof
8 rof
end SGE;

Procedure SGE presented in Pseudo-code 2 executes
the symmetric Gaussian elimination algorithm in its
simplest form, without taking into consideration the
sparsity patterns of the matrices Bx and the correspond-
ing LU factors. For large-scale linear programs, the
coefficient matrix 4 is usually sparse. The successful
implementations of interior point methods!!!7-3-32:42]
suggest that positive results are obtained whenever the
level of sparsity of A is preserved in 4AD,?A7 as much as
possible.

Next, we illustrate the difficulties encountered in
the efficient implementation of the Gaussian elimina-
tion procedure for sparse symmetric matrices. At this



stage, we assume that system (2.2) is such that matrix
B has been analyzed and ordered towards sparsity
preservation. Ordering for sparsity is the subject of
Section 3 of this paper. The nonzero pattern for the LU
factors and sequence of pivots are determined before
the actual factorization procedure. Accordingly, order-
ing the matrix and creating data structures take into
consideration the nonzero pattern alone, disregarding
their numerical values. For the purposes of this discus-
sion, we assume the solution procedure to be divided
into the following steps:

(i) Analyze the sparsity pattern of B, and determine
a suitable symmetric permutation. Build the data
structure for the LU factors, including fill-in
entries.

(ii) Perform Gaussian elimination to obtain LU
factors.

(iii) Perform forward and back substitutions.

In step (i), we build the data structure depicted in
Figure 2, where we initially load the super-diagonal
elements of B in a row-wise representation, with the
diagonal elements in a separate dense array. As implied
by (2.15), this is the starting matrix U in the sequence
({U®, UY, ... U™ built by the symmetric Gaussian
elimination procedure. This data structure is similar to
the one described by Figure 1, which stores the coeffi-
cient matrix 4. Matrix U, however, is stored row-wise,
with its diagonal elements in a separate array. The data
structure is composed of four arrays, referred to by their
FORTRAN designations:

diag contains the diagonal elements of U.

iaat contains pointers to the first off-diagonal entry
of each row of U. Component iaat(r) points to
the position after the last nonzero entry in U.

jaat contains the column indices corresponding to
each entry of U.

aat contains the nonzero elements of U stored row-
wise. L can be obtained implicitly from U as
implied in (2.6).

3 m-1 m

s [ [ [ [

1

we [T 0
N
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PSEUDO-CODE 3—BASIC SPARSE
SYMMETRIC GAUSSIAN ELIMINATION

procedure BSSGE(m, diag, iaat, jaat, aat)

I forg=1,.... m—-1—

2 fori=qg+1,...,m— pi):= 0 rof;

3 for i = iatt(g), ..., iaat(g+ 1) — 1 —
p(jaat(i)) := i rof;

4 for i = jaat(g), ..., iaat(g+ 1)~ 1 =

5 [ = jaat(i);

6 diag(/) := diag(/) — aat(i)*/diag(q);

7 for j = iaat(/), ..., jaat(/+ 1) — | —

8 if p(jaat(j)) # 0 —

9 aat(j) := aat(j) — aat(i) X
aat(p(jaat(/))/diag(q);

10 fi

11 rof

12 rof

13 rof

end BSSGE;

ot [ [ LT
[T T T T T =T

Figure 2. Data structure for LU factors.

ut]

Pseudo-code 3 describes the operation correspond-
ing to step (ii)—performing the Gaussian elimination
procedure. For each pivot row g, the code in lines
2-12 applies an elementary transformation to UV as
indicated in (2.12). First, in lines 2 and 3, we build a
dense array representation of row ¢ in dense array p,
with links to the position of each nonzero element in
the data structure. This will be used to speed up the
operation performed in lines 7-11, where row q is
merged with each transformed row. In lines 4-12, the
procedure scans pivot column g of L9, Since L@ and
(U9 have identical structures, we actually traverse
row g of U'?. As output, this procedure provides the
upper-triangular factor U stored in the same data struc-
ture used as input.

This procedure can be made more efficient by
avoiding the repetitive scheme of creating a dense rep-
resentation of each pivot row. This is the central pur-
pose of the improved Gaussian elimination procedure
described later.

In step (iii) operations corresponding to (2.9) and
(2.10) are carried out. In practice, the forward substi-
tution operation is incorporated to the Gaussian elimi-
nation procedure, by applying all elementary transfor-
mations to the resource vector . However, splitting the
computational procedures is important for some var-
iants of Karmarkar’s algorithm.!"-2> 4’ In these variants,
computing the search direction in each iteration re-
quires the solution of linear systems with identical
coefficient matrices but different right-hand sides. The
implementation of the forward and back substitution
operations are described in several matrix computation
references.!!% 14191
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3. Ordering for Sparsity

In the previous section, no attention was given to the
sparsity pattern of the system of linear equations. In
most practical large-scale linear programs, the coeffi-
cient matrix A4 is of low density. With some exceptions
described in Section 8, this matrix will generate, at each
iteration of the linear programming algorithm, a sparse
matrix B,. However, the application of Gaussian elim-
ination to this matrix causes fi/l-in. The nonzero struc-
ture of the L and U factors displays entries in positions
which are zero-valued in By. For this reason, the data
structure depicted in Figure 2 is based on the nonzero
pattern of the upper-triangular factor U, including the
fill-in elements. Consequently, procedure BSSGE does
not add new elements to the data structure, using
instead the memory positions already allocated to the
Jfill-in elements. In general terms, the amount of storage
and number of operations necessary when applying
Gaussian elimination to the B, matrix grows with the
number of fill-in elements created during this process.
It is possible to build examples where the number of
operations necessary to perform the Gaussian elimina-
tion method increases in spite of a reduction in the
number of fill-in elements.

The total number of fill-in elements depends on
the ordering of rows and columns of By. Consider, for
example, problem Bandm from the NETLIB collec-
tion.!"” Starting with the sparse linear programming
coefficient matrix presented in Figure 3, we illustrate
the fill-in phenomenon by depicting the nonzero pat-
tern for the By in Figure 4, and the nonzero pattern of
the corresponding LU factors in Figure 5. In spite of
the low density of the By, its LU factors turn out to be
very dense.

The high level of fill-in can be reduced by applying
an appropriate symmetric permutation to By. Algebra-
ically, we select a permutation matrix P and trans-
form the system for each iteration k of the linear

Figure 3, Nonzero pattern of coefficient matrix A.

e B

Figure 5. Nonzero pattern of LU factors without ordering.

programming algorithm as follows:
(PBPT)Pd = Pb. (3.1)

Even for the symmetric case, finding the permutation
that yields the minimum fill-in in the LU factors is an
NP-hard problem.” As a practical consequence, we
cannot expect to find an efficient algorithm that iden-
tifies an optimal ordering. Hence, heuristics are devised
that efficiently compute a permutation that approxi-
mates the effect of the optimal one, at least in matrices
derived from real-world applications.

We examine below two frequently used sparsity
preserving ordering heuristics. The first follows the
Markowitz criterion,™ which is designed for unsym-
metric matrices. In general terms, the Markowitz
ordering heuristic begins with a given matrix By, and
at each stage of the Gaussian elimination, reorders
columns and rows in such way as to minimize the



product of the number of diagonal entries in the pivot
row and column. It can be regarded as an attempt to
minimize the number of arithmetic operations in the
next stage of the Gaussian elimination algorithm, or as
an attempt to select the pivot column that introduces
the least fill-in in the next stage. This local minimization
strategy does not guarantee a global minimum for either
the amount of fill-in or total number of arithmetic
operations performed during Gaussian elimination.

The specialization of the Markowitz ordering heu-
ristic for symmetric matrices results in the minimum
degree ordering heuristic.®>3* It has received much
attention in the literature and its analysis has produced
an interesting graph theoretic interpretation of the
matrix ordering problem.!'*!53¢! At each stage of the
Gaussian elimination procedure, the minimum degree
ordering heuristic performs symmetric row and column
interchanges so that the next pivot row is, among the
rows in the portion of the matrix still to be factored,
the one with the minimum number of nonzero entries.
Efficient implementations of this heuristic make it the
standard technique in linear equation solvers. The main
feature that distinguishes different implementations is
a tie-breaking strategy used to select the next pivot row
among all the rows matching the minimum number of
nonzero entries. The possible positive effect of using
the minimum degree ordering heuristic is illustrated by
Figures 6 and 7. They display the nonzero patterns for
By and the corresponding LU factors, after permuting
the rows of the linear programming coefficient matrix
according to this ordering heuristic.

Another ordering heuristic results from the effort
of trying to reduce the amount of fill-in further than
the Markowitz criterion. The minimum local fill-in
ordering heuristic selects, at each stage of the Gaussian
elimination procedure, the pivot element that intro-

Figure 6. Nonzero pattern of 447 after ordering (minimum
degree ordering heuristic).
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Figure 7. Nonzero pattern of LU factors after ordering (mini-
mum degree ordering heuristic).

duces the minimum amount of fill-in. This heuristic
was suggested by Markowitz,'*® and by Tinney and
Walker® where it is designated as the minimum defi-
ciency algorithm. Compared to the minimum degree
ordering heuristic, Figures 8 and 9 illustrate the poten-
tial for further reductions in the number of fill-in
elements and the number of operations required by
Gaussian elimination. Of course, this ordering heuristic
does not necessarily produce a better ordering. Duff,
Erisman and Reid!'¥ illustrate this point with an ex-
ample where the minimum degree heuristic produces
an optimal ordering while the minimum local fill-in
heuristic does not. From an experimental point of view,
Duff and Reid!” conducted a comparison between the
two ordering heuristics in the case of unsymmetric
matrices and notice that the minimum local fill-in
ordering performed marginally better. The minimum
local fill-in heuristic is considerably more expensive, as
we must update the sparsity pattern whenever we ex-
amine a pivot candidate. Due to its higher computa-
tional cost even in a sophisticated implementation, the
comparison study rejects the minimum local fill-in
ordering heuristic.

Our motivation for introducing the minimum local
Jill-in heuristic into this discussion is straightforward.
Karmarkar’s algorithm solves a sequence of systems of
linear equations sharing an identical nonzero structure.
Therefore, the ordering procedure will be executed only
once at the beginning of the algorithm, and the resulting
permutation remains valid for the remaining iterations.
By contrast, the Gaussian elimination procedure is
repeated in every iteration of the linear programming
algorithm, and any computational savings achieved by
a better ordering is multiplied by the total number of
iterations of the algorithm. Except for anomalous test
problems, the effort of ordering a matrix according to
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local fill-in ordering heuristic).
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Figure 9. Nonzero pattern of LU factors after ordering (mini-
mum local fill-in ordering heuristic).

either heuristic does not constitute a significant portion
of the algorithm’s total computational effort. Conse-
quently, the extra effort involved in performing the
minimum local fill-in heuristic does not impact signifi-
cantly the algorithm’s running time. The computational
experiments reported in [5] compare the use of two
ordering heuristics with the implementation of Kar-
markar’s algorithm discussed here. For linear program-
ming test problems from the NETLIB collection,!'? it
reports savings of up to 36% in total running time in
favor of the minimum local fill-in heuristic.

4. Interpretative Procedure for Sparse Gaussian
Elimination

The straightforward use of existing sparse linear system
software modules in the implementation of Karmar-

kar’s algorithm ignores one of its fundamental compu-
tational characteristics. The system of linear equation
solved at each iteration of the linear programming
algorithm is such that its nonzero structure remains
unchanged throughout the algorithm. As we presented
before in (2.1), at each iteration k of the linear program-
ming algorithm, we solve the following system:

(AD2AT)d, = b 4.1)

From iteration to iteration, only the diagonal scaling
matrix Dy changes, which does not affect the nonzero
structure of AD,247.

An interpretative procedure for Gaussian elimina-
tion symbolically analyzes at first the nonzero pattern
of the system of equations, without consideration to its
actual numerical values. This initial phase, called sym-
bolic factorization, collects information to be used dur-
ing Gaussian elimination. The actual LU factors for
AD?AT are computed at each iteration of the linear
programming algorithm by performing a numerical
Jfactorization. Since we are solving a sequence of systems
of linear equations, all with identical nonzero structure,
a single symbolic factorization step is performed in the
beginning of the algorithm. The extra effort expended
in the symbolic factorization stage is usually justified
by the savings accrued at each iteration of the linear
programming algorithm.

Most implementations of the Gaussian elimination
procedure for sparse positive definite matrices share
a similar blueprint. In a preparatory stage, the code
obtains a suitable sparsity ordering and builds a static
data structure, including the fill-in elements that will
be created during the process. Unlike some imple-
mentations of the symbolic/numerical factorization
schemes,!'"*) an interpretative code also compiles a list
of the operations to be performed during the Gaussian
elimination process. The numerical factorization stage
consists of a simple procedure that scans this list of
operations, applying them to AD,?>A” computed at each
iteration k of Karmarkar’s algorithm, and yielding the
corresponding LU factors. The objective is to relieve as
much as possible the numerical factorization procedure
of costly indirect memory access and other overhead
operations. The solution for the system of linear equa-
tion is obtained from the LU factors as usual, by means
of forward and back substitution operations.

The interpretative version of the Gaussian elimi-
nation procedure is an important feature of the imple-
mentation of Karmarkar’s algorithm presented by Ad-
ler et al.!"! This approach is motivated by a Gaussian
elimination implementation that generates loop-free
FORTRAN codes tailored to a given sparse matrix.?! In
this fashion, all the overhead operations related to
indirect access of elements in the data structure are
avoided. The symbolic factorization step involves the



compilation of the resulting FORTRAN code. The draw-
back hidden in the loop-free approach is the prohibitive
memory requirement necessary to store the resulting
FORTRAN code, even for moderately sized matrices.!'”!
The interpretative approach® follows a natural
extension of the loop-free code idea. In the procedure
SGE, described in Pseudo-code 2, each update operation
on the super-diagonal elements of factor U in the
symmetric Gaussian elimination procedure is:

Wi 1= Uy — UgUqif Ugq. 4.2)

Instead of creating an actual line of FORTRAN code that
executes this operation, we collect the locations of
elements uy;, Uy, uy and u,, into an array of pointers
called the operation list. Operations on the diagonal
elements are stored in a similar manner. This operation
list is used as data by a simple FORTRAN subroutine that
executes the arithmetic computations as indicated by
the list pointers. This scheme reduces the storage re-
quirement incurred in the loop-free approach, still mak-
ing use of some indirect addressing to access matrix
elements, but eliminating a substantial portion of the
overhead operations. Still, the operation list require-
ments can grow dramatically fast with the size of the
problem. We describe in Section 6 a technique that
effectively reduces the storage requirements by per-
forming the LU factorization with the aid of a dense
window data structure.

As exemplified by Marsten et al.?” and Monma
and Morton,? the use of such interpretative scheme is
not essential for a successful implementation of interior
point algorithms. Gay!'® compares three different
Gaussian elimination implementations, including two
versions of the interpretative approach. This study ob-
serves that a scheme designed without the use of an
operation list performs within a factor of two of the
optimal floating-point operation rate, leaving little
~ room for improvement. His numerical experiments
report speed-ups of up to 22% when an interpretative
scheme is used, at the expense of large memory use.
We argue that by incorporating a dense window data
structure we benefit from the improved performance
offered by the use of an operation list without massive
memory use.

In our implementation, the symbolic factorization
step builds a similar operation list. As illustrated in
Figure 10, we add to data structure {diag, iaat, jaat, aat}
arrays that describe the list of operations performed
during Gaussian elimination. Referring to (4.2), ug is
directly accessible in FORTRAN array diag, u,; is identi-
fied by scanning the nonzero elements of the current
pivot row g. The operation list is built in two levels of
pointers, indicating the operations necessary to merge
rows ¢ and i corresponding to lines 7-11 in Pseudo-
code 3. The FORTRAN arrays used in the representation

Data Structures for Karmarkar’s Algorithm 93

wo [T 11 TT]

we [T TT0
S

me (TTTITTIT T

o [TTIITTIT 1]

peraca | [ L[] [T 'iL
%H N

P e o
IR B I N B

Figure 10. Data structure for factorization operation list.

of the operation list are the following:

ptradd contains pointers to the first position of the
operation list involving each element of U.
Each ptradd(7) element corresponds to a super-
diagonal element of U stored in aat(i), and
can be scanned with the aid of the pointers
contained in array iaat. :

Istadd contains pointers to the elements involved in
each operation in the Gaussian elimination
procedure. Istadd is a two-dimensional array,
where each position points to two super-
diagonal elements of U stored in aat. The first
dimension contains the index of array aat
storing the value of u;, and the second dimen-
sion contains the same information for the
value of uy;.

PSEUDO-CODE 4—INTERPRETATIVE
SPARSE SYMMETRIC GAUSSIAN

ELIMINATION
procedure ISSGE(m, diag, iaat, jaat, aat, ptradd, Istadd)
1 forg=1,....m—-1—
2 for i = iaat(q), ..., iaat(¢+ 1)— 1 —
3 [ := jaat(i);
4 diag(/) := diag(/) — aat(i)*/diag(g);
5 for j = ptradd(i), ..., ptradd(i + 1) — | —
6 aat(Istadd(1, /))
= aat(Istadd(1, j)) — aat(i) X
aat(Istadd(2, 7))/diag(qg);
7 rof
8 rof
9 rof
end ISSGE;
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Procedure 1SSGE in Pseudo-code 4 encapsulates the
interpretative Gaussian elimination algorithm. The nu-
merical factorization stage consists mostly of scanning
the operation list (inner-loop in lines 5-7) and perform-
ing the Gaussian elimination computations updating
the super-diagonal elements of factor U. Gay!'?! ob-
serves that Istadd can be reduced to a one-dimensional
array. In a modified implementation, procedure 1SSGE
scans the operation list for the location in array aat
storing the value of u; while the location of u,; is
obtained by concurrently scanning the nonzero ele-
ments of the pivot row.

5. Building and Updating AD,2A”

The solution of a system of linear equations dominates

the theoretical complexity of Karmarkar’s algorithm.
However, in practice, forming the 4D;247 matrix at
each iteration & of the linear programming algorithm
consumes a significant portion of the total computa-
tional effort. In this section, we describe a procedure
that reduces the effort of building this matrix at each
iteration by performing some of the computations in
the preparatory stage of the algorithm. In addition,
further reduction in the computational effort can be
achieved by approximating AD;*47, and updating it
from iteration to iteration.
As before, we define

Bk = ADszT. (51)

Each super-diagonal element of By is expressed as

Bi(i, j) = X AG, ) X A(j, [) x D&(, 1)
= (5.2)
forlsi<j<n.

Since in (5.2) only the scaling matrix Dy changes from
iteration to iteration, we compute every nonzero outer-
product A(i, I) X A(j, [) once in the beginning of the
linear programming procedure.

As depicted in Figure 11, the following arrays are
added to data structure {diag, iaat, jaat, aat} with the

information associated with the outer-products:

ptrprd  contains pointers to the first element of outer-
product list involving elements in each column
of A.

Istprd contains the computed outer-products sorted
in increasing order of the corresponding col-
umn index /.

Istdst for each entry in Istprd, Istdst contains a
pointer to the location of element By(i, j) in
array aat,

PSEUDO-CODE 5—BUILDING AD,*4”

procedure BLDMTR(m, n, Dy, diag, ia, ja, a, iaat,
jaat, aat, ptrprd, Istdst, Istprd)

I fori=1,...,. m-1-

2 diag(i) := 0;

3 for j = iaat(i), ..., jaat( + 1) — 1 —
aat(jaat(j)) := O rof;

4 rof;

5 diag(m) :=0;

6 fori=1,...,n—

7 forj =ia(i),...,la(i+ D—-1—

8 diag(ja(/)) := diag(ja(/)) + a()) X a(j) X

Dy, iy
9 rof;
10 for j = ptrprd(i), ..., ptrprd(i + 1) — | —
11 aat(Istdst( 7)) := aat(Istdst(;)) + Istprd(/)
X Di(i, i)
12 rof

13 rof
end BLDMTR,;
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Figure 11. Data structure for outer-product list.

Using the list of outer-products, B is built at each
iteration of the linear programming algorithm by pro-
cedure BLDMTR outlined in Pseudo-code 5. This pro-
cedure produces as output the data structure required
as input by procedure BSSGE.

In an effort to reduce the computational complex-
ity of the linear programming algorithm, Karmarkar{®!
suggests a scheme where an approximate scaling matrix
is determined at each iteration. Using this approximate
scaling matrix, the search direction can be obtained
through a series of rank-1 updates on the coefficient
matrix of the system of linear equation used in the
previous iteration. As a consequence, each iteration can
be performed in an average of O(m?*?) arithmetic op-
erations, compared to the O(m?) arithmetic operations
required to solve a system of linear equations. In prac-
tice, we do not implement this scheme, obtaining the
search directions by solving system (2.2) directly. How-
ever, although not improving on the algorithm’s overall
complexity, the computational effort of building the
system of linear equations (2.2) can also be reduced by
using the approximate scaling matrix.



At iteration k, instead of computing the exact
scaling matrix

Dy = diag(1/v/%, ..., 1/v.5), (5.3)

as in line 4 of Pseudo-code 1, we use an approximate
scaling matrix Dy. Starting with

D, = D, (5.4)

we compute the elements of Dy by updating elements
in the previous approximate scaling matrix whenever
they differ substantially from the corresponding ele-
ments in the exact scaling matrix. The updates are
performed as follows:

Di(i, i), = (5.5)
Di(i, i),
if | Dili, i) = Dics(i, 1) 1/] DiarG, i) | < e
D, i),
if | Di(i, i) = Dir(i, i) | /| Di=1(i, 1) | = €,

for a given ¢, > 0. In practice, we use ¢, = 0.1. After
computing the current approximate scaling matrix ac-
cording to (5.5), we define

A= D¢ - Di-.. (5.6)
Then, we write the following update expression:
Bi = AD2AT = AD}_ AT + AAAT,  (5.7)

where By denotes the matrix replacing By in system
2.2).

This approach computes the B, matrix by adding
the second term of the right hand side of (5.7) to the
matrix used in the previous iteration. As the algorithm
progresses, the v* iterates converge to the optimal dual
slack values. The components of v* converging to non-
zero values display small variation towards the last
iterations of the algorithm. The corresponding diagonal
elements of A will be zero, excluding the associated
columns of the coefficient matrix 4 from the update
operation described in (5.7). The practical effect of this
strategy is illustrated in Figures 12-14, where we dis-
play, as the algorithm progresses, the proportion of
excluded columns and the CPU time required to build
the B, matrix (relative to the CPU time to build the
matrix from scratch).

In Figure 12, we examine the behavior of solving
phase II of problem Bandm from the NETLIB collection.

After removing trivial rows and columns, this test prob-

lem has 246 rows and 401 columns. The optimal solu-
tion found by Algorithm 1 displays a small degree of
dual degeneracy, with 157 nonzero dual slack values.
Since this does not represent a substantial portion of
the total number of columns, we observe modest sav-
ings in building matrix B;. A more dramatic effect is
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Figure 12. Excluding columns in updating 4D,24” (phase II of
problem Bandm).
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Figure 13. Excluding columns in updating AD,?47 (phase II of
problem Scsd6).

displayed in Figures 13 and 14. Problem Scsd6, also
from the NETLIB collection, has 147 rows and 1350
columns, with 1168 nonzero dual slack values in the
optimal solution found by Algorithm I. As the algo-
rithm progresses, updating B requires substantially less
effort by virtue of the large portion of columns excluded
from the update operation. Also, for problems with a
nonempty dual feasible interior, the Phase I stage of
the algorithm approaches a dual point where all dual
slacks are positive. For problem Bandm. Figure 14
shows the increasing number of excluded columns and
decreasing CPU time required to build By.

At each iteration k, Algorithm I computes a
tentative primal solution, as indicated in line 9 of
Pseudo-code 1, by substituting Dy for Di. An interest-
ing observed property of this approximation scheme
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Figure 14. Excluding columns in updating AD,24” (phase I of
problem Bandm).
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Figure 15. Solution accuracy for system of linear equations
(phase 11 of problem Bandm).

is that as the algorithm converges, the solution to the
approximate system

(AD3ATYd, = b (5.8)
approaches the solution to the exact system
(AD2AT)d, = b. (5.9)

An example of this is illustrated in Figure 15 for prob-
lem Bandm, where we plot
1(4DATyd, - b (5.10)

as a function of iteration k.

PSEUDO-CODE 6—UPDATING THE A4D,’4A7

procedure UPDMTR(m, n, A, ia, ja, diag, a, iaat, jaat,
aat, ptrprd, Istdst, Istprd)

1 fori=1,...,n—

2 if AL D)) #0—

3 forj=ia(i),...,ia(i+ 1)—-1—

4 diag(ja())) := diag(ja(/)) + a(j) x a())
X A(L, 1),

5 rof;

6 for j = ptrprd(i), ..., ptrprd(i + 1) — | —

7 aat(Istdst(/)) := aat(Istdst())) +
Istprd(j) X A(i, i);

8 rof

9 fi

10 rof

end UPDMTR;

We present procedure UPDMTR in Pseudo-code 6,
which updates matrix By at each iteration. Assume that
diagonal matrix A was computed according to (5.6),
and the matrix approximation for the previous iteration
is'initially stored in data structure {diag, iaat, jaat, aat}.
Then, for each column i of the coefficient matrix A,
lines 2-9 are executed whenever the update matrix A
diagonal element is nonzero, replicating Pseudo-code 5
modified to update the diagonal and off-diagonal ele-
ments of By.

6. Using a Dense Window

In the interpretative procedure for Gaussian elimination
described in Section 4, we observe a drawback. The
operation list compiled during the symbolic factoriza-
tion stage can grow dramatically with the size of the
coefficient matrix. One possible way to overcome this
deficiency arises from a simple observation. As indi-
cated in Figure 16, after the matrix is ordered towards

Iohuoue

oo

Figure 16. Nonzero pattern of LU factors with a dense window.



sparsity, the nonzero elements of the corresponding LU
factors are clustered in the lower right corner forming
a dense submatrix. The representation of the LU factors
during Gaussian elimination can be split in two parts.
Unlike the sparse portion which is represented as usual,
the dense sub-matrix is stored in a dense array, includ-
ing positions for zero elements. Consequently, positions
in this dense window can be accessed directly without
information on the nonzero pattern of the LU factors.

The data structure storing the LU factors including
a dense window consists the data structure {diag, iaat,
jaat, aat} with extensions. During the symbolic factori-
zation stage, we select a row m? where the dense rep-
resentation for the LU factors is started. As displayed
in Figure 17, we modify array aat and add two auxiliary
pointer arrays as follows:

aat contains the super-diagonal nonzero elements
of U stored row-wise, for rows with sparse
representations. For rows in the dense window,
the super-diagonal elements of U are stored
row-wise as dense arrays. After the numerical
factorization scheme, aat reverts to the full
sparse representation.

contains pointers to the first off-diagonal entry
in each row with a column index in the dense
window. This assumes that jaat is ordered,
within each row, by column index.

contains pointers to the first super-diagonal
elements of each row with dense representa-
tion. More specifically, during Gaussian elim-
ination, element u; is stored in aat(dnsptr(i) +
j— i). These pointers are kept for programming
convenience only, since they could be recom-
puted as needed based on the last pointer for
the sparse portion of the representation.

fstdns

dnsptr
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PSEUDO-CODE 7—INTERPRETATIVE
GAUSSIAN ELIMINATION WITH DENSE
WINDOW

procedure DISSGE(m, m?, diag, iaat, jaat, aat, ptradd,
1stadd, fstdns, dnsptr);

1 forg=1,...,.m-1—>

2 for i = iaat(qg), . .., fstdns(q) — 1 —

3 [ := jaat(i),

4 diag(/) := diag(/) — aat(/)*/diag(q);

5 for j = ptradd(i), ..., ptradd(i + 1) - | —
6 aat(I1stadd(1, 5))

:= aat(1stadd(1, j)) — aat(i) X
aat(1stadd(2, j))/diag(q);

7 rof;

8 rof;

9 for i = fstdns(g), . .., iaat(¢ + 1) — 1 —
10 [ := jaat(i);

11 diag(/) := diag(/) — aat(i)*/diag(q);

12 forj=i+1,...,iaat(g+ )—1—
13 p' = dnsptr(/) + jaat(j) — /;

14 aat(p') := aat(p') — aat(j) X aat(i)/diag(q);
15 rof;

16 rof;

17 rof;

18 forg=m?, ..., m-1—

19 for i = iaat(q), ..., iaat(g+ 1) -1 —
20 p' = dnsptr(q) + jaat(i) — ¢;

21 [ := jaat(i);

22 diag(/) := diag(/) — aat(p‘)*/diag(q);
23 forj=i+1,...,iaat(g+1)- 1>
24 P’ = dnsptr(g) + jaat(j) — ¢;

25 p' = dnsptr(/) + jaat(j) — /;

26 aat(p') == aat(p’) — aat(p’) X aat(p')/diag(q);
27 rof;

28 aat(i) = aat(p’);

29 rof

30 rof

end DISSGE;
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Figure 17, Data structure for LU factors with a dense window.
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Based on the data structure described above, we
extend procedure ISSGE so that the operation list will
pertain only to elements stored in the sparse portion of
the representation. Procedure DISSGE in Pseudo-code 7
incorporates the dense window representation during
Gaussian elimination. The data structure described in
Figure 17 is supplied as input, initialized with the super-
diagonal values of matrix 4D,24” for the current itera-
tion of the linear programming algorithm. Partitioned
into two main sections, the code in lines 1~17 perform
elementary operations based on pivot rows with sparse
representation. The remainder of the code (lines
18-30) performs similar operations based on pivot rows
with dense representation. This procedure supplies, as
output, the U factor stored in the original data structure
{diag, iaat, jaat, aat].

Similar to the behavior of the operation list, in the
methodology introduced in Section 5 for building the
By matrix, the size of the list of outer products can grow
too fast with the size of the linear program. One solution
to this problem is to limit the size of arrays Istprd and
Istdst by the use of the same dense window used in the
interpretative Gaussian elimination. In the preparatory
stage of Algorithm I, we compute only outer-products
A(i, ) X A (j, I) associated with elements Bi(i, j) in
rows with sparse representation. These outer-products
are stored in array Istprd as described in Section 5. The
outer-products associated with elements in rows with
dense representations are computed when building By
in each iteration of the linear programming algorithm,
In this situation, element B,(i, j) associated with outer-
product A(i, /) X A(j, ) is stored in the dense portion
of array aat, in a position determined solely by row
indices i and .

When computing the outer-products, we scan the
nonzero elements of each column of 4, using only the
elements in rows with dense representation. Assuming
that the column-wise representation of A is ordered
according to row indices, we modify data structure

Figure 18. Data structure for coefficient matrix with dense
window.

{ia, ja, a} to include information linking the sparse
representation of the linear programming coefficient
matrix with the dense window representation used dur-
ing Gaussian elimination. Figure 18 depicts the modi-
fied column-wise representation of 4. It includes an
array of pointers jadns that indicates the location of the
first element in each column of 4 corresponding to a
row with dense representation.

PSEUDO-CODE 8—UPDATING A4D.4” WITH
DENSE WINDOW REPRESENTATION

procedure DNSMTR(m1, 7, A, diag, ia, ja, a, iaat, jaat, aat,
ptrprd, Istdst, Istprd)

1 fori=1,...,n—

2 ifA(LD#0—

3 forj=1ia(i),...,iai + 1) - | —

4 diag(ja(/)) := diag(ja(/)) + a(j) x a(j) X
A, 1);

5 rof;

6 for j = ptrprd(i), . . ., ptrprd(i + 1) — 1 —

7 aat(Istdst(/)) := aat(Istdst(;)) + Istprd(;) x
AL, §);

8 rof

9 for j, = iadns(i), ... ,ia(i + 1)~ I;

10 L= ja(j);

11 forj,=ji + 1,ia(i + 1) — I;

12 p = dnsptr(/) + ja(j2) - /;

13 aat(p) 1= aat(p) + a(j:) X a(j) X A(, i);

14 rof

15 rof

16 fi

17 rof

end DNSMTR;

Procedure DNSMTR described in Pseudo-code $
incorporates the dense window approach to proce-
dure UPDMTR. As before, we assume that data structure
{diag, iaat, jaat, aat} contains Bi_,. The B, matrix is
computed by updating, if necessary, the contribution
of each column of 4.

7. Preprocessing of the Linear Programming
Coefficient Matrix

Preprocessing operations are intended to eliminate eas-
ily detectable redundant rows and dominated columns
(redundant rows in the dual problem) and to reduce
the density of the coefficient matrix. Linear program-
ming input data is frequently presented by the user in
a form that is ill-suited for direct solution. Often, there
are columns or rows where all elements are zero, re-
dundant constraints, obvious infeasibilities, null or
fixed-value variables and dominated columns.

In the preprocessing phase of our code we identify
several of the above conditions that are detectable by a



simple inspection of the input data. There is a twofold
justification for the relevance of this procedure imple-
mented in subroutine CLEAN. On one hand, by elimi-
nating some rows and columns, the solution procedure
will effectively deal with a smaller problem. In addition,
we eliminate some numerical stumbling blocks with
the removal of null variables and redundant constraints.
The procedure follows the outline below:

(i) Identify and remove all rows that have all coeffi-
cient entries with the same sign and zero right
hand side, setting all variables that appear in these
constraints to zero.

(i) Identify any row that has all coefficient entries
with the same sign and right hand side of the
opposite sign. If any is found, declare the problem
infeasible.

(iii) For all rows with only one entry, set the corre-
sponding variable to the right hand side value or
declare the problem infeasible if the value is neg-
ative. Update the right hand side whenever a fixed
variable is found.

The above process is repeated until no further change
occurs.

In practice, it is usually possible to reformulate a
given linear program as an equivalent problem with a
coefficient matrix of reduced density. The procedure
described below eliminates nonzero elements in the
linear programming coefficient matrix 4 by means of
elementary row operations. Any linear programming
algorithm can potentially profit from the reduced den-
sity in coefficient matrix. In the case of Karmarkar’s
algorithm, the benefits of a sparser coefficient matrix
are immediate. As long as the lower density level is
replicated in matrix 4AD;247, the computational effort
per iteration will be reduced and no major change is
expected in the total number of iteration or convergence
properties. On the other hand, for strictly pivoting
algorithms, we cannot easily evaluate the effect of re-
duced density. The cost of updating the basis inverse is
likely to be reduced. However, the total number of
iterations can change in any direction, as we cannot
predict the behavior of other operations such as pricing.

Given a system of linear equations, finding an
equivalent system with minimum number of nonzero
elements in its coefficient matrix is referred to as the
Sparseness Problem. Unless some simplifying assump-
tions are added, this problem is NP-Hard.”* We de-
scribe below a local sparsity-increasing heuristic, imple-
mented in subroutine SPARSE. In each step of SPARSE,
the heuristic selects a set of row operations that yields
the maximal local reduction in the number of nonzero
clements in the linear programming coefficient matrix,
producing an equivalent linear program. After each
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step, subroutine CLEAN is applied to the resulting linear
program attempting to eliminate newly found null or
fixed-value variables.

The main loop of SPARSE is repeated until only an
insignificant number of nonzero elements of 4 can be
canceled. In our code, we consider the reduction to be
insignificant if less than one percent of the nonzero
elements are canceled. The main loop consists of four
phases:

(i) Build Pivot Table (PT).
(ii) Sort Pivot Table.
(iii) Perform elementary row operations according to
sorted PT.
(iv) Clean the resulting matrix.

In phase (i), for every pair of rows (i, j) of the
coefficient matrix 4, the procedure scans the nonzero
elements of row j and identifies the pivot element that
cancels the greatest number of nonzero elements in row
i. This operation is called the maximal elementary row
operation of row j on row i. The column index of the
pivot element that corresponds to the maximal elemen-
tary row operation is ¢, and the number of canceled
elements is #c. An elementary row operation can be
compactly represented by the tuple [7, j, c,, #c]. The list
of all maximal elementary row operations is called the
Pivot Table (PT). In phase (ii), PT is sorted in decreas-
ing order of the number cancellations #c.

In phase (iii), the elementary row operations are
performed in the order indicated by the sorted PT. This
is achieved by executing procedure CANCEL, described
in Pseudo-code 9.

Finally, in phase (iv), procedure CLEAN is applied
to the resulting linear program, eliminating null and
fixed-value variables uncovered by the elementary row
operations.

PSEUDO-CODE 9—PERFORM
ELEMENTARY ROW OPERATION
procedure CANCEL(n, A, list PT)
1 fork=1,..., m— marked(k) = false rof;
2 doPT#[]—
3 [iJ ¢ #e] == PT(L);
4 PT := PT[2.];
5 if not marked(i) and not marked(j) —
6 fork=1,...,n—
7 iie 1= Qi = (Gic, / e, )i
8 rof;
9 marked(i) ;= true
10 fi
11 od
end CANCEL;

Figures 19-23 illustrate the effect of input matrix
preprocessing for a corporate level production planning
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L

Figure 19. Nonzero pattern of coefficient matrix 4 before
CLEAN.

Figure 20. Nonzero pattern of coefficient matrix A after CLEAN
nonz(4) = 2092.

model for the semiconductor industry.?”’ Figure 19
depicts the input matrix before preprocessing. Figure
20 shows the resulting matrix after CLEAN is carried
out. Several fixed variables are identified and the matrix
dimension is reduced. At this stage there are 2092
nonzero elements in A. Figure 21 shows the resulting
equivalent input matrix after SPARSE is applied. The
number of nonzero elements has fallen to 1728, repre-
senting a reduction of 17.4%. Figures 22 and 23 show
the difference between LU factors when SPARSE is not
activated (Figure 22) and when it is (Figure 23). The
number of nonzero entries in L falls from 11933 to
7896, a 33.8% reduction. Tables I and II illustrate
applying SPARSE on a set of linear programming test
problems that includes several linear programs publicly
available through NETLIB.['Z

Figure 21. Nonzero pattern of coefficient matrix 4 after SPARSE
nonz(A4) = 1728.

Figure 22. Nonzero pattern of LU factors before SPARSE
nonz(L) = 11933.

Figure 23. Nonzero pattern of LU factors after SPARSE nonz(L)
= 7896. ‘
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TABLE I
Density Reduction
Problem nonz(A) nonz(s(A4)) % Reduction nonz(L) nonz(s(L)) % Reduction
Afiro 102 102 0.00 107 107 0.00
AdLittle 417 393 5.76 404 383 5.20
Scagr7 457 434 5.03 734 731 0.41
Sc205 663 661 0.30 1182 1211 -2.45
Dsg 691 630 8.83 1226 940 23.33
Share2b 777 738 5.02 1026 1014 1.17
Sharelb 1148 1060 7.67 1425 1287 9.67
MulTest 1283 1275 0.62 717 717 0.00
Scorpion 1393 1300 6.68 2324 2297 1.16
Scagr25 1717 1604 6.58 2948 2945 0.10
Sctapl 1872 1420 24.15 2667 1985 25.57
Brandy 1927 1811 6.02 2850 2797 1.86
Beaconfd 2062 840 59.26 1727 1107 35.90
Agg 2092 1728 17.40 11933 7896 33.83
Scsdl 2388 2388 0.00 1392 1391 0.07
Israel 2443 1705 30.21 13744 12921 5.99
E226 2558 2257 11.77 3414 3223 5.59
Scfxmli 2655 2478 6.67 4963 4541 8.50
Scrs8 3147 2948 6.32 5134 5161 0.52
Ship04s 3899 3891 0.21 3134 3130 0.13
Scsd6 4316 4316 0.00 2545 2545 0.00
Forplan 4608 2202 52.21 3688 2546 44.85
Agg2 4728 3140 33.59 21535 18306 14.99
Agg3 4744 3156 33.47 21535 18306 14.99
Ship08s 4929 4911 0.37 4112 4090 0.54
Pilot4 5248 5118 2.48 14115 14414 =2.12
Scfxm2 5315 4961 6.66 9791 9163 6.41
Ship04] 5771 5763 0.14 4158 4380 -5.07
Shipl2s 5983 5965 0.30 5063 5079 -0.32
Fpk010 6021 5784 3.94 854 854 0.00
Sctap2 7334 5548 24.35 14870 12375 16.78
Scfxm3 7975 7444 6.66 14619 13791 5.66
Scsd8 8584 8584 0.00 5879 5879 0.00
Czprob 8993 8942 0.57 7059 7007 0.74
Ship08l 9480 9462 0.19 7128 7106 0.31
Sctap3 9734 7394 24.04 19469 16051 17.56
25f47 10566 10016 5.21 34291 32190 6.13
Ship12l 12667 12649 0.14 9501 9493 0.08

Table I shows the reduction in nonzero entries of
A and L obtained by using SPARSE. Columns 1-3 show,
respectively, the number of nonzero elements in A4 after
CLEAN but prior to SPARSE, after SPARSE and the corre-
sponding percentage reduction. Columns 4-6 show the
same for the Cholesky factor L. .

In Table II IBM 3090 CPU times are shown.
Column 1 lists CPU times for Algorithm I without
SPARSE. Column 2 are the CPU times for running
SPARSE alone. Column 3 shows the times for running
Algorithm I (excluding the time taken by SPARSE).
Column 4 is the percentage reduction in CPU time for
optimization alone. Column 5 is the sum of columns 2
and 3, i.e., the total CPU time for Algorithm I with
SPARSE. Column 6 is the total percentage reduction

in CPU time. All CPU times are measured with the
DATETM utility. The FORTRAN subroutines were com-
piled on the FORTvVS compiler with options OPT(3),
NOSYM and NOSDUMP.

A total of 38 test problems were run. In 34 there
were positive reductions in the density of A. In 24 there
was a greater than 5% reduction. In 10 the reduction
was greater than 10%. The density reduction was
greater than 20% in 8 problems; greater than 30% in 5
and greater than 50% in 2. The maximum reduction
measured was 59.2%. In 28 cases there was a positive
reduction in the density of L. In 17 cases the reduction
was greater than 5%; in 9 cases it was greater than 10%;
in 5 cases it was more than 20%; in 3 cases it was more
than 30% and in one case it was 44.85%. However, in
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TABLE 1
Solution CPU Times (IBM 3090 sec)

Problem No sparse Sparse Opt % Reduction Total % Reduction
Afiro 0.03 0.01 0.02 33.33 0.03 0.00
AdLittle 0.12 0.01 0.12 0.00 0.13 -8.33
Scagr7 0.17 0.02 0.18 -5.56 0.20 —15.00
Sc205 0.29 0.01 0.29 0.00 0.30 -3.33
Dsg 0.32 0.03 0.23 28.13 0.26 18.75
Share2b 0.29 0.03 0.29 0.00 0.32 -9.38
Sharelb 0.59 0.05 0.52 11.86 0.57 3.51
MulTest 0.30 0.03 0.31 -3.23 0.34 ~-11.76
Scorpion 0.51 0.03 0.50 1.96 0.53 -3.92
Scagr25 0.69 0.06 0.68 1.45 0.74 -6.76
Sctapl 0.85 0.09 0.62 27.06 0.71 19.72
Brandy 1.51 0.08 1.36 9.93 1.44 4.86
Beaconfd 0.69 0.32 0.36 47.83 0.68 1.47
Agg 7.86 0.23 3.76 52.16 3.99 49.24
Scsdl 0.41 0.02 0.41 0.00 0.43 —4.65
Israel® 17.36 0.29 14.65 15.61 14.94 13.94
E226 1.55 0.19 1.43 7.74 1.62 —4.32
Scfxml 1.97 0.13 1.76 10.66 1.89 4.06
Scrs8 2.28 0.09 2.61 ~14.47 2.70 —15.56
Ship04s 1.27 0.04 1.32 -3.94 1.36 -6.62
Scsd6 0.84 0.03 0.83 1.20 0.86 -2.33
Forplan 1.90 0.18 1.18 37.89 1.36 28.42
Agg2 11.49 0.49 8.78 23.59 9.27 19.32
Agg3 12.48 0.49 9.05 27.48 9.54 23.56
Ship08s 1.54 0.05 1.55 -0.65 1.60 =375
Pilot4 14.24 0.13 14.24 0.00 14.37 -0.90
Scfxm2 4.24 0.25 3.86 8.96 4.11 3.07
Ship041; 2.27 0.06 2.27 0.00 2.33 -2.58
Ship12s 1.87 0.05 1.89 1.07 1.94 -3.61
Fpk010 0.83 0.32 0.74 10.84 1.06 -21.70
Sctap2 6.70 0.35 5.16 22.99 5.51 17.76
Scfxm3 6.45 0.38 6.02 6.67 6.40 0.78
Scsd8 1.66 0.07 1.67 —0.60 1.74 -4.60
Czprob 9.55 0.20 9.39 1.68 9.59 —0.42
Ship08! 3.99 0.10 3.88 2.76 3.98 0.25
Sctap3 9.33 0.54 7.39 20.79 7.93 15.01
25fv47 45.42 0.51 40.00 11.93 40.51 10.81
Shipi2] 4.89 0.12 4.87 0.41 - 499 -2.00

“ Solution times for Israel are for implementation using direct factorization.

five cases there were small increases (at most 5.07%)
in the density of L despite reductions in the density of
the corresponding 4 matrix.

The maximum CPU time for SPARSE was (.54
seconds on the IBM 3090. There were 17 cases of
decrease in total CPU time and 20 cases of increased
time. In 10 cases the decrease was greater than 10%; in
3 it was more than 20% and in | greater than 40%.
The maximum decrease was 49.2%. In 8 cases the
increase in CPU time was greater than 5%; in 4 cases
it was greater than 10% and in only a single case was it
greater than 20%. This case showed an increase of
21.7%. As a whole, for the 38 problems tested, the use
of SPARSE decreased the total CPU time by 10.34%. It
should be pointed out that SPARSE did particularly well

on specific linear programming models such as Asg,
Asg2 and Asg3, the before mentioned production plan-
ning model and on Sctapi, Sctap2 and Sctap3, random
staircase structure linear programs.??*!

8. Treating Dense Columns in the Coefficient
Matrix

In previous sections, we concentrated on the solution
of the system of linear equations (2.1) by direct meth-
ods. This seems to be appropriate for most real-world
linear programming problems, where the 4D?*47 matrix
can be made sparse after an appropriate ordering of the
rows of 4. However, some linear programming formu-
lations contain a few dense columns in the coefficient
matrix 4, in spite of low overall density. This will result



in AD?A” extremely dense, regardless of the selected
row permutation. Consequently, we face prohibitively
high computational effort and storage requirements in
the Gaussian elimination procedure.

We illustrate this situation with Problem Israel
from the collection of linear programming test prob-
lems available through NeTLIB.!'?! From the nonzero

pattern of the linear programming coefficient matrix.

presented in Figure 24, we detect the presence of a few
dense columns. Figure 25 depicts the nonzero pattern
for the AA7 matrix, which is already very dense, in spite
of the ordering procedure. Of course, the corresponding
LU factors, shown in Figure 26, are even more dense
since fill-in is created.

To remedy this situation, we turn our attention to
the conjugate gradient method applied to the solution
of systems of linear equations.”? According to conver-
gence properties described in [16] and other nonlinear
programming texts, the conjugate gradient method
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Figure 24. Nonzero pattern of coefficient matrix A—problem
Israel.

Figure 25. Nonzero pattern of complete A4”—problem Israel

(minimum local fill-in ordering heuristic).
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Figure 26. Nonzero pattern of LU factors—problem Israel
(minimum local fill-in ordering heuristic).

solves a system of linear equations in m iterations. In
practice, the property of finite termination does not
apply, as a consequence of rounding errors. This sug-
gests an analysis of the conjugate gradient method as
a genuinely iterative technique.*¥ Golub and van
Loan!'""! presented a convergence analysis of the result-
ing iterative method, suggesting extremely low conver-
gence for ill-conditioned problems.

One technique to deal with this problem is referred
to as preconditioning. Following an approach initially
discussed in [31], we make use of a hybrid scheme in
which we first perform an incomplete factorization of
AD*AT. Next, we use the incomplete triangular factors
as preconditioners for a conjugate gradient method to
solve the system of linear equations defined in (2.1).

The incomplete factorization is obtained by parti-
tioning the coefficient matrix 4 into two submatrices,
based on a threshold value g imposed on the number
of nonzero elements in each column. Matrix 4y con-
tains all the columns with less than ¢ nonzero elements,
with all the remaining columns in matrix Ay. The
selection of g takes into consideration the structure of -
the coefficient matrix 4. It must be such that Ay is of
full-rank and AyAx7 is sparse. At each iteration k, we
compute L, and L7, the Cholesky factors of Ay Dx?An",
where Dy is the principal submatrix of D, correspond-
ing to the columns that form Ay. As opposed to using
the LU factors, we need the symmetry displayed by the
Cholesky factors to build the followmg system of linear
equations:

Qu = f, (8.1)

where
Q = Ly '(AD2AT L), (8.2)
u=L7d, (8.3)
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and
f=L'. (8.4)

The purpose of using preconditioner L is to change
the eigenvalue structure of AD;*A”, hopefully improv-
ing the convergence properties of the conjugate gradient
method when solving the transformed system (8.1). The
selection of this preconditioner is appropriate for linear
programming problems where the elimination of a few
dense columns in the coefficient matrix results in
AnDn*ANT that is much easier to factor via Gaussian
elimination than AD:?47. The simple inspection of
Figures 27 and 28 will establish this assumption for
problem Israel. After the removal of a few dense col-
umns from the coefficient matrix, the corresponding
AAT matrix has a favorable nonzero structure. Conse-
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Figure 27. Nonzero pattern of incomplete 44" —problem Israel
(minimum local fill-in ordering heuristic).
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Figure 28. Nonzero pattern of incomplete LU—problem Israel
(minimum local fill-in ordering heuristic).

quently, after an appropriate ordering of the rows of
the coefficient matrix, the Cholesky factors are also
sparse.

Various preconditioning strategies have been sug-
gested in the literature.!* 526313337 Thejr usefulness in
the implementation of Karmarkar’s algorithm will cer-
tainly be the subject of much research in the near future.

Let e, > 0 be a given termination tolerance. The
steps of the conjugate gradient algorithm are outlined
is described by Pseudo-code 10.

PSEUDO-CODE 10—CONJUGATE
GRADIENT ALGORITHM

procedure CNIGRD(Q, f, €)

1 Ug I=f

2 rn=Qu-—f

3 po=-n

4 =0

S do|rilld = e—
6 g = Op;

7 a; = || r:l12*/pi"a;
8 Uivy = U; + o Di
9 Fiv1 = QUiy, = f

10 Bi=1ri "22/" T ||z2
11 Div1 = —Figy + Bip;

12 I=i+1;
13 od
end CNJGRD;

9. Summary and Concluding Remarks

In this paper we presented data structures and program-
ming techniques for a direct factorization imple-
mentation of the dual-affine variant of Karmarkar’s
algorithm for linear programming, Efficient solution of
a sequence of sparse symmetric positive definite systems
of linear equations is essential for a successful imple-
mentation of most variants of Karmarkar’s algorithm.
We described an interpretative version of Gaussian
elimination, tailored to solving such a sequence of
systems. This version of Gaussian elimination takes
advantage of the strong structural and numerical cor-
relation among the linear systems. In a preprocessing
phase of the linear programming algorithm, we perform
a symbolic factorization step where several data struc-
tures are built for use throughout the iterations of the
algorithm. These data structures store the problem data
and a symbolic representation of the numerical com-
putations that are to be carried out by the algorithm.
A numerical factorization step accesses this symbolic
representation at each iteration. A dense window data
structure is used to control the growth of the data
structure. Furthermore, we discuss the following tech-
niques required for the efficient implementation of the



interpretative scheme for Gaussian elimination:

+ A procedure to build the 4D;*47 matrix at each
iteration of the linear programming algorithm.

* A scheme in which an approximation of AD,2A7 is

obtained at each iteration by updating the matrix

used in the previous iteration.

A procedure that identifies and eliminates easily de-

tectable null or fixed variables. As a consequence, the

procedure also identifies some trivial infeasibilities or
redundancies.

+ A scheme designed to increase the sparsity of the
input linear programming matrix by carrying out row
operations.

+ A preconditioned conjugate gradient procedure for
handling linear programs with a few dense columns
in the coefficient matrix.

Some of the implementation details related to ex-
perimental fine tuning are omitted here, but discussed
in [1]. Other issues are the subject of future research.
These include:

« Obtaining an initial interior feasible solution.

* A variety of termination criteria, including detection
of unboundedness and infeasibility.

« Facilities for sensitivity and post-optimality analysis.

 Obtaining an optimal basic solution.

o Computer architectural dependent implementation,
including vectorized and concurrent versions.

« Implementation based on a preconditioned conjugate
gradient algorithm.

« Data structures and techniques for handling ranges
and bounded variables.

 Implementation of primal and primal-dual variants
of the algorithm.
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