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We present a family of variants of the Simplex method, which are based on a Constraint- 
By-Constraint procedure: the solution to a linear program is obtained by solving a sequence of 
subproblems with an increasing number of constraints. We discuss several probabilistic models 
for generating linear programs. In all of them the underlying distribution is assumed to be 
invariant under changing the signs of rows or columns in the problem data. A weak regularity 
condition is also assumed. Under these models, for linear programs with d variables and 
m + d inequality constraints, the expected number of pivots required by these algorithms is 
bounded by a function of min(m, d) only. In particular this means that, for a fixed numb-r of 
variables, the expected number of pivots is bounded by a constant when the number of 
constraints tends to infinity. Since Smale's original model [S1] satisfies our probabilistic 
assumptions, the same results apply to his model, although not to the particular algorithm he 
analyzes. We also present some results for models generating only feasible linear programs, 
and for Bland's pivoting rule. We conclude with a discussion of our probabilistic models, and 
show why they are inadequate for obtaining meaningful results unless d and m are of the 
same order of magnitude. 
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1. Introduction. The Simplex Method for Linear Programming, originated by 
Dantzig in 1947, is one of the most frequently used algorithms in industry and 
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government. The ordinary measure of complexity of this method is the number of 
pivot steps it requires to solve a linear program, expressed as a function of the 
dimensions of the problem. Vast practical experience indicates that this function is 
linear, or at most polynomial [D], [KQ]. However, examples have been constructed for 
several variants of the Simplex method, showing that in the worst case the number of 
pivots may grow exponentially with the dimensions [KM], [J], [GoS], [Z], [Mu]. The 
Ellipsoid Algorithm [Kh] was demonstrated to solve linear programs in time which is 
polynomial in the length of the problem data in the worst case, but appears to be much 
slower than the Simplex method in practice. 

Recently, several works have tried to explain the efficiency of the Simplex method by 
approaching the complexity issue probabilistically: Assuming some distribution of the 
problem data, this approach tries to show that the average number of pivots grows 
slowly with the problem's dimensions. To quote these results denote the number of 
variables in the problem by d and the number of inequalities by n, and assume d < n. 
We use c to denote a constant and c(d) to denote a function of d only. Borgwardt 
[Bol], [Bo2] showed that a parametric simplex variant requires an average of at most 
c - n - d2 (d + 1)2 pivots for a probabilistic model which generates only feasible 
linear programs. Smale [S1], [S2] showed that the parametric Self-Dual Simplex 
requires an average of at most c(d)(log(n - d))d(d+l) pivots when the problem data 
are drawn from a spherically symmetric distribution. Using simple combinatorial 
arguments Blair [Blr] has proved that a similar result holds under very weak probabilis- 
tic assumptions. Megiddo [Mel] has sharpened Smale's analysis by showing that, for 
every d, the average number of pivot steps executed by Self-Dual Simplex tends to a 
finite limit as n tends to infinity. Adler [A] and Haimovich [H] demonstrated that, if 
two objective functions are chosen at random, the parametric Simplex path that moves 
from an optimal vertex for the first objective function to an optimal vertex (or 
unbounded ray) for the second, requires an average of at most d steps. However, since 
the objective function determining the initial vertex is chosen randomly, their results 
do not have immediate consequences for the full (Phase I-II) Simplex method. 

In this paper we define a family of Simplex variants which are based on a 
Constraint-by-Constraint (CBC) procedure: They obtain a solution to a linear program 
by solving a sequence of subproblems with an increasing number of constraints. We 
present three consecutively more general algorithms satisfying this property. We show 
that under probabilistic assumptions which are weaker than Smale's [S1], these 
algorithms require an average of no more than c[d] pivots where c[d] is between 
d * 1.5d and 25d, depending on the algorithm and the probabilistic model. In particular, 
this implies that when d is fixed and m tends to infinity, the expected number of 
pivots required to solve the problem is bounded by a constant. All our probabilistic 
models require that the problem data satisfy a weak regularity condition with probabil- 
ity one. The strongest model requires that the problem data be generated by a 
distribution which is invariant under changing the sense of any subset of the inequali- 
ties defining the problem. Weaker models, which do not require invariance with respect 
to changing the signs of the nonnegativity constraints (if such are included), are also 
investigated. Since Smale's original model [S1] satisfies these assumptions, this implies 
that these algorithms (though not necessarily the one analysed by Smale) require an 
average of at most a constant number of pivots for Smale's model when one dimension 
of the problem is kept fixed and the other tends to infinity. We also show that Bland's 
pivoting rule, when combined with the 'Big M' method, is a special case of a 
Constraint-by-Constraint algorithm. 

Finally we discuss the consequences of these results. We observe that, in all these 
models, there is a very high probability, when m > d, that a random problem will be 
infeasible. The Constraint-by-Constraint algorithms exploit this property by detecting 
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infeasibility at an early iteration with high probability. Therefore the good behavior of 
these algorithms when m >> d results primarily from the probabilistic models and not 
from the nature of the Simplex method. Hence these models are inadequate for 
obtaining meaningful results unless d and m are of the same order of magnitude. 

2. Preliminaries. For a matrix A E Rmxd, we denote by A or A, the ith row of A, 
and by A i, the ith column of A. If S is a sequence of indices of rows (columns), we 
denote by As (As) the submatrix obtained by taking only the rows (columns) in S. 

We shall deal with the Linear Programming Problem (LPP) in the form 

mincTx, s.t. aTx > bi, i=1,...,m, x >O, (P) 

where c, x, ai E Rd, b1 E R. 
The constraints of the form aix > bi are called matrix constraints to be distinguished 
from the x, > 0 sign (or nonnegativity) constraints. Define also: 

a 
r , 

b R 

aT b 
am ,bm b, 

n = m + d, A:= min(m, d). 

So equivalent presentations of (P) are 

min cTx and min cT, 
Ax > b, Mx > v. 
x > 0, 

Occasionally we shall deal with LPP in the form 

mincTx, Ax> b, (P) 

where dimensions are as in (P), but we do not necessarily have nonnegativity 
constraints. Here we can identify n = m, M = A, v = b and refer to both forms 
together as min cTx, Mx > v. 

The Parametric Objective Function LPP is the problem 

min(c+Xc)Tx, Mx >v, c,cERd, X ER, 

where the optimal solution for X = 0 is given, and we wish to find the optimal solution 
for all values of the parameter A. Here c is called the objective function and c the 

co-objective. 
The Parametric problem can be solved by a well-known Phase II Simplex variant 

called the Parametric Objective Algorithm [GaS]. Under some nondegeneracy assump- 
tions that will be described later, this algorithm has the following properties: 

(1) It starts at a given vertex of the feasible set F := {xlMx > v which is optimal 
with respect to cTx in F. 

(2) When A is increased, the optimal solution may change, generating a connected 
one-dimensional path, following vertices and edges of F. This path is called the 
efficient path generated by the algorithm. 

(3) The path may terminate in a vertex of F, in which case that vertex is optimal for 
all A greater than some X. It may also terminate in an unbounded ray of F, in which 
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case the solution is unbounded (i.e. the objective function is unbounded from below 
over the feasible set) for X greater than some X. 

(4) The same phenomena happen when X is decreased from zero. The connected 
union of the paths for X > 0 and X < 0 is called the co-optimal path. 

Every inequality of the form M,x > vi can be considered as a halfspace in Rd 
determined by the hyperplane Mix = vi and a sign (or orientation) choice with respect 
to that hyperplane. The opposite sign choice would yield the inequality Mix < vi. 
Given k hyperplanes in Rd, k > d, every one of the 2k sign choices determines a 
constraint set or an instance. A nonempty instance is called a cell. Under a nondegen- 
eracy assumption (to be described later) every cell is d-dimensional. In that case we say 
that the hyperplanes form a d-arrangement. 

When the parametric algorithm is used on each of the cells of a d-arrangement with 
the same objective and co-objective, a co-optimal path is generated in each cell. 
Assuming nondegeneracy, these paths have the following properties [A], [H]: 

(1) Each vertex is optimal with respect to cTx in exactly one cell. 
(2) Each vertex is on exactly (d + 1) co-optimal paths in cells incident on it. 
We shall denote pr(A, b, c) the number of pivot steps required to solve LPP with 

that data by algorithm r. Assuming a specific probabilistic model over the data, we 
shall denote 

pr(m, d) := E[pr(A, b, c)] 

where the averaging is done over all A E Rmxd, b E Rm, c E Rd according to that 
specific probability model. 

3. The parametric CBC algorithm. We now describe an algorithm for solving 
linear programs. The algorithm solves a sequence of subproblems, each one containing 
one more constraint than its immediate predecessor. (We call algorithms satisfying this 
property Constraint-by-Constraint (CBC) algorithms.) In each subproblem we start at a 
vertex supplied by its predecessor, and follow an efficient path until either feasibility 
with respect to the new constraint is obtained, or infeasibility is demonstrated. If 
the problem is feasible, the last efficient path provides the required solution. Since the 
Parametric Objective Algorithm is used in every subproblem we call this algorithm the 
Parametric-CBC (PCBC) algorithm. 

In order to state the algorithm formally, define 

X(k := { x E RdlX > 0 and aiTx > b, for i = 1,... k}, k = 0,1,..., m, 

X := X(), 

e := (1,1,...,1) E R. 

Statement of the PCBC algorithm 
Stage 0: (For X(O) = Rd 0 minimizes eTx). 
x - 0; Go to stage 1. 
Stage k (1 < k < m): (Starts with x minimizing eTx in X(k-)). 
If ajx > bk go to stage k + 1 (x is also optimal in X(k)). 
Else use the Parametric Objective Algorithm to solve the parametric linear program 

mineTx - Oax, x E X(k-l) 

The algorithm starts at x and generates an efficient path of edges and vertices in 
X(k-1) 
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Case 1. Let x be the first point along the path which satisfies akx > bk. (x is a 
feasible vertex of X(k) and minimizes ex in X(k).) Go to stage k + 1 with J <- x. 

Case 2. If the path terminates without reaching such i--Stop, the problem is 
infeasible. 

Stage m + 1: (Starts with x minimizing eTx in X). 
Use the parametric objective algorithm to solve 

min eTx + cTx, x E X. 

The algorithm starts at x and the end vertex (or ray) of the efficient path provides the 
required solution. 

4. Proof of validity. In order to prove that the algorithm is valid we have to verify 
it recognizes infeasibility, unboundedness and optimality correctly. This will be estab- 
lished if we justify the claims in cases (1) and (2) in the description of the algorithm. 

We only need to consider the case where the starting point x of stage I satisfies 
aTx < b,. In that case the algorithm produces in step 1 a connected path following 
edges and vertices of X('-1), stopping at the first point x on that efficient path 
satisfying a,x > b,. By the continuity of a x along the path, at that point x, a x = bl. 

Denote the corresponding value of the parameter by 0. By efficiency of x with 
respect to e - Oa, we know that 

(e - a,)Tx < (e - a,)x for all x E X('-1); 

hence 

eTk < eTx + 0(aT - aTx) for all x E X(-1). 

Every point x e X(') satisfies also aTx > b, = aTx. Hence eTr < eTx for all x e X). 
This justifies the statement in Case 1. 

To justify Case 2, note first that we cannot terminate in a ray in stage I without 
obtaining feasibility with respect to the Ith constraint. This is true since if for 0 -* oo 
also eTx - Oafx - -oo on some ray in X(-'1), the fact that eTx > 0 on X1-1) 

implies that ax - oo on that ray in X('-1, hence the Ith constraint aTx > bz must be 
satisfied at that point on that ray, so X(t) <(. 

So we know that in Case 2 we must terminate in an optimal vertex x, satisfying 

eTx - OaTS < eTx - aTx Vx E X('-'),VO > 0, 

and a,x < b,. 
Assume X(t) = (. Then there exists jx E X(t), satisfying axT > b, > aTx. Hence, for 

sufficiently large 0, eTr - 0a[x < eTr - Oafx and x e Xt-'1), a contradiction. Several 
comments can be made on the algorithm: 

(1) The choice of e E Rd as the starting objective is quite arbitrary. In fact, any 
vector u E Rd for which min{ uxlx E X(?)) is finite will do. So we can replace e by 
any nonnegative vector. 

(2) The algorithm is valid for every LPP, even if the data are degenerate. In that 
case we need only to introduce some anticycling device into the parametric algorithm 
we use in every stage (e.g. [D], [Bln]). 

(3) The algorithm solves every LPP in any form, since by a proper transformation 
every LPP can be presented in an equivalent form (P). 

574 



FAMILY OF SIMPLEX VARIANTS SOLVING m X d LINEAR PROGRAM 

5. The probabilistic models. Let us now define the basic ingredients which we use 
in our probabilistic models. 

Let a linear programming problem in form (P) be given by the data (A, b, c). We 
call the data Vertex-Distinct (VD) if all bases generated by the d + m hyperplanes 
correspond to distinct vertices. This condition is satisfied if for every d x d submatrix 

Ms of M= A with rank d, 

Ms vs 
rank = d + 1 for all j i S. 

Note that this condition depends only on A and b. 
For the same data with an additional co-objective c E Rd, call data Path-Unique(PU) 

if the co-optimal paths generated by the parametric algorithm in each cell are uniquely 
defined. This condition is satisfied if for every d x d nonsingular submatrix Ms, 
(c + Xc)TMs 1 has at most one zero coordinate for any real A. Usually we will use 
e E Rd as the second objective, and we mention c only when its identity is not obvious. 
Note that this condition depends on A,c,c but not on b. 

If the data are both VD and PU we call it Weakly Regular (WR). We also say that 
(A, b, c, c) are in weakly regular position. If both (A, b, c, c) and (AT, c, b, b) are WR 
[VD] we say that the data is Twice-WR (TWR) [twice-VD (TVD)]. 

A probabilistic model for the generation of the data which produces weakly regular 
(or VD, or PU) instances with probability one is called a Weakly Regular (or VD, or 
PU) Model. 

A distribution of the data (A, b, c) will be called Column Sign Invariant (CSI) if it 
is invariant under changing the signs of every subset of the columns of A. If it 
is invariant under sign changes of columns of C] we call it Extended-CSI (ECSI). 
If it is invariant under changing the signs of every subset of the rows of [A, b] we call it 
Row Sign Invariant (RSI). 

A distribution which is both RSI and CSI [ECSI] will be called Sign Invariant (SI) 
[Extended-SI (ESI)]. Note that Sign Invariance does not imply any condition on the 
objective c, but ESI does. Note also that the primal data are RSI if and only if the dual 
data are ECSI. 

The advantage of the various sign invariant models to our work is that their 
probabilistic analysis can be done in essentially combinatorial techniques. Similar 
models were used by May and Smith [MS] for investigating random polytopes, and by 
Adler and Berenguer [AB1], [AB2] for investigating several issues in random linear 
programs. 

A measure over rays in Rn is called a Spherically Symmetric Measure (SSM) if the 
measure of a set of rays of S is ,L(S fn B"-1) where B"-~ is the unit sphere in R" and 
It is the normalized uniform measure on B"- . A measure over sets of vectors in R" is 
called SSM if by identifying every vector with its corresponding ray (i.e. by ignoring 
the radial parts of the vectors) the resulting measure over rays in R" is SSM. 

A distribution of the data (A, b, c) is called Spherically Symmetric if A assumes a 
SSM in Rmxd and independently (bT, cT) assumes SSM in Rm+d. 

The models used by Adler [A] and Haimovich [H] are Twice Weakly Regular and 
Extended Sign Invariant. (In fact, they require CSI in the matrix 

c 0 
c 0 

-A b 

and assume that c and c are also randomized.) 
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The model used by Smale [S1] is Twice Weakly Regular and Spherically Symmetric. 
Note that Spherical Symmetry implies Extended Sign Invariance, since a spherically 
symmetric measure is invariant under reflections of coordinates. So Smale's model is 
also ESI. 

The model used by Borgwardt [Bol], [Bo2] is Weakly Regular and requires that the 
rows of 

-T cT 

-A 

are i.i.d. and assume spherically symmetric measure in Rd - {0}. Hence this model is 
Extended-CSI but not RSI. 

6. Analysis of the WR-RSI model. Consider (fixed) data A, b, c satisfying the 
Weak Regularity conditions. The 2" LP instances obtained from that data by flipping 
signs of the matrix inequalities are equiprobable under the Row-Sign Invariance 
model. The same is true for the 2k subinstances obtained by using only the first k 
matrix inequalities together with the sign inequalities as we do in the PCBC algorithm. 
Note that in all subinstances d more sign constraints are present, but their signs are 
kept fixed. 

In stage k + 1 of the algorithm k matrix constraints and d sign constraints are 
present, generating at most (k d) vertices. The algorithm follows efficient paths in all 
feasible instances (cells) generated. By Weak Regularity each vertex is on the co-opti- 
mal paths in exactly d + 1 cells [A], [H]. So an upper bound on the number of pivots 
performed in stage k + 1 is 

( + )(d + 1),. 

Every feasible subinstance in stage k + 1 may be completed in 2m-k different ways 
to form an instance of the original problem, all of which are equiprobable. So the total 
number of pivots contributed in stage k + 1 to solving full instances is at most 

d )(d 
+ 

1)2-k. 
Summing over all stages we get that the total number of pivots performed in all the 

instances is bounded by 

kd )(d+ 1)2m-k 
k=l 

Hence the average number of pivots per instance is bounded by 

M i i k d\ w / . - \ 

2- E (d a(d + 1)2-k = (d + 1)2dE k + 
d 2-(kd (d + 1)2d+l 

k=1 d k=l d 

where the last inequality follows from Lemma A in the Appendix. Since this result is 
independent of the data and requires only that it satisfies WR we can conclude: 

THEOREM 1. For a model satisfying the Row Sign Invariance and Weak Regularity 
with probability one, the PCBC algorithm requires an average of at most (d + 1)2d+l 
pivots, independent of m. 
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COROLLARY 1. Under the above model when d is fixed and m -, oo the average 
number of pivots is bounded by a constant. 

COROLLARY 2. For a TWR, ESI model 

PPcBc(m, d) < (A + 1)2A+1 where A = min(m, d). 

PROOF. Apply the Parametric CBC Algorithm either to the primal or to the dual, 
depending on whether m > d or d > m. Since both problems satisfy the conditions of 
Theorem 1, the corollary follows. 

We shall improve this last result in the next section. 

7. Analysis of the WR-SI model. In the previous section we did not use the fact 
that only vertices in the positive orthant may contribute pivot steps at any stage. We 
now use that fact in a model which is Column Sign Invariant. 

LEMMA 1. Let (A, b, c) be VD and assume that it is drawn from a Column-Sign- 
Invariant distribution. Then the probability that a vertex generated by (A, b) is in the 

positive orthant is 2-', where I is the number of tight matrix constraints at that vertex. 

PROOF. Let x be a vertex determined by the d equations 

A,1X = bA, 

x2 = 0 with I1A1 + IA21 = d l, 21 = , 2= {,..., d}\A2. 

Denote B = A2,, the I x 1 submatrix of A determined by the rows in A1 and the 
columns not in A2. v := b,l, z := x32. Then the above system is Bz = v and we ask 
what is Pr[z > 0] assuming B is taken from a Column-Sign-Invariant distribution. 

Changing signs of columns in B may be presented by multiplying it by an 1 x I sign 
matrix J satisfying 

j _ f +1 or -1 if i =j, 
ij \ O otherwise. 

BJ is the matrix obtained from B by flipping the signs of those columns k s.t. 

Jkk = -1. There are 2' different sign matrices, and they all satisfy J = J-1. Hence 
Bz = v iffB(JJ-l)z = v, or (BJ)(Jz) = v. 

As all sign inversions of columns BJ are equiprobable, so are all Jz obtained from 
them. Since (B, v) is VD := B-lv satisfies zi # OV,. Hence Pr[Jz E S] = 1/21 for 
every orthant S of R'. 

COROLLARY 3. For VD data (A, b, c) satisfying CSI, the expected number of 
vertices in Rd is E-o( )(dd _)2 

Consider now a model which assumes Weak Regularity, Row Sign Invariance as well 
as Column Sign Invariance. The reasoning of the previous section obviously holds and 

by the above corollary we can replace (k 
+ 

d) by 

l k\( d 1)2 10 

as the expected number of vertices which contribute pivots in stage k + 1. 
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Hence the average number of pivots is bounded by 

(d+l 1) E 
k d k 

k=1 I=0 l d- 1 

And using Lemma B (see Appendix) we get that this sum for m -- oo is equal to 
2(d + 1) * 1.5d. So we conclude: 

THEOREM 2. For a model satisfying Weak Regularity and Sign Invariance, the 
average number of pivots required by the PCBC Algorithm is bounded by 2(d + 1)1.5d, 
independent of m. 

COROLLARY 4. For a model which is TWR and ESI 

PPCBC(m, d) < 2(A + 1)1.5a where A = min(m, d). 

8. Analysis of a feasible model. Let us now turn to a model which generates only 
feasible linear programs. This model generates problems of one of the forms used by 
Borgwardt [Bo3], namely 

max cx, Ax < e, x > O, (P') 

where A E RmX, eT := (1, 1,...,1) E Rm 
Instead of solving (P') which is always feasible since x = 0 is feasible, we shall solve 

its dual 

mineTy, A Ty>c, y >0. (D') 

This program has a bounded solution for all A, c for which it is feasible, since the 
objective function value is bounded below by 0. 

We use the PCBC Algorithm to solve (D'). The only difference is that stage d + 1 is 
unnecessary since if we reach that stage we already have a vertex of X optimal with 
respect to eTx. 

Since our choice of objective function e in the first m stages of the PCBC Algorithm 
was made especially in order to guarantee boundedness of the solution, nothing is 
changed in our analysis from the previous sections and we conclude: 

THEOREM 3. For a model of feasible LPs (P') which is Dual Weakly Regular and 
Extended Column-Sign Invariant, the PCBC Algorithm requires an average of at most 
(m + 1)2m1 pivots, independent of d. 

PROOF. Apply Theorem 1 to the dual of (P') which has data (A, c, e) with 
AT G Rdxm 

Note that we cannot replace here m by min(m, d) as we did in corollary 2, since we 
do not have here the choice between solving (P') and (D'). However we can improve 
the exponent if we assume that the data are also RSI. 

THEOREM 4. For a feasible model which is dual WR, ECSI and [A] is also RSI 

PPCBC(m, d) < (m + 1)1.5T 

independent of d. 

PROOF. Apply Theorem 2 to the dual of (P'). 

The CBC algorithm. We now define a new algorithm to solve the Linear Program- 
ming Problem. This algorithm uses the Constraint-by-Constraint idea, but it allows one 
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to use any primal algorithm at every stage. It turns out that this very general algorithm 
(which we call the CBC Algorithm) is also analyzable in our probabilistic models. 

Statement of the CBC algorithm. 
Stage 0: (x = 0 is a feasible vertex of X(0)) 
Set x <- 0; Go to stage 1. 
Stage k (1 < k < m): (x is a feasible vertex of X(k-1)). 
Use any primal algorithm to solve max{ a,xlx E X(k-} starting at x. 
If the optimum does not satisfy akTx > bk-Stop. X(k) = 4 so X = = . 
Otherwise choose any vertex x of X(k) obtained along the path. Go to step k + 1 
with x <- x. 
Stage m + 1: (x is a feasible vertex of X). 
Use any primal algorithm to solve min crxlx e X} starting at x. 
The optimal vertex (or ray) generated provides the required solution. 
The proof that the algorithm is valid is obtained from the following invariant 

assertions: 
(i) If max{akTxx E Xk-l)} < bk then X(k) = . 
(ii) If maxakTxlx E X(k-1)} > bk then X(k) 4 and every primal algorithm 

starting at x reaches a feasible vertex of X(k). 

PROOF. (i) is immediate. To prove (ii) note that either in the beginning at stage 
k + 1 akx > bk and then x is a vertex in X(k), or at some point along the path akx 
increases to a value of bk, and hence x is a vertex in Xk). 

10. Analysis of the CBC Algorithm. The only crucial property of the CBC 
Algorithm in order to carry out the analysis is that in every subproblem we follow only 
feasible vertices of the corresponding set. Assuming nondegeneracy each vertex of the 
feasible set may be used in at most one pivot. So, the average number of pivots in each 
stage is bounded by the average number of feasible vertices per instance in that stage. 

In stage k + 1 the k + d hyperplanes generate at most (k 
+ d) vertices. Under the 

Vertex Distinctness assumption each vertex is incident on exactly 2d instances. Hence 
at most (k + 

d)2d pivots are performed in that stage. Under the RSI assumption all 2k 
instances generated at stage k + 1 are equiprobable. So the average number of pivots 
in stage k + 1 is at most (k d )2d2-k, and the average number of pivots summed over 
all stages is bounded by 

2 E 
k d )2-k = 22d E )2i < 22d?1 

k=0 d j=d d 
where in the last inequality we used Lemma A from the Appendix. So we conclude: 

THEOREM 5. Under a model which satisfies Vertex Distinctness and Row-Sign Invari- 
ance, every variant of the CBC Algorithm requires at the most 22d+ pivots, independent 
of m. 

If we add the Column-Sign Invariance assumption we can improve the bound using 
Lemma 1 and the following 

LEMMA 2. Let x be a vertex generated by the d hyperplanes 

aix = bi, i=,...,, 

x =0, i= + 1,...,d. 

Then out of the 2d cells generated around x by those hyperplanes, exactly 21 are in R+. 

579 



ILAN ADLER, RICHARD KARP & RON SHAMIR 

PROOF. The 2d cells are generated by replacing the equality signs by inequalities in 
all possible ways. However, in Rd the last d - 1 signs are restricted to xi > 0. Under 
that restriction all 2' cells generated by other inequalities are in Rd. 

Assuming CSI, from Lemma 1 and 2 we get that the total number of pivots 
performed in stage k + 1 in the positive orthant is bounded by 

k d yI 
, i k (d i k+d 

1=0 I ( 1-0 d )* 

Hence the expected number of pivots is bounded by 

_ k+_ d )2k = 2 (m)2 -!j 2d?1 mko d 2 j- ) 

where the last inequality uses Lemma A. So we get the following result: 

THEOREM 6. (1) For a VD, SI model pcBc(m, d) < 2d+l 

(2) For a Twice-VD, ESI model PCBC(m, d) < 2+1. 

For the feasible model (P') we can apply all our arguments to the dual (D') as in 
section 8. Since we did not make any assumptions on the objective function distri- 
bution in order to obtain Theorems 5 and 6(1), these results hold when the objective 
function in (D') is kept positive. So we get: 

THEOREM 7. For a feasible model of the form (P') if it is Dual-VD and ECSI then 

PCBc(m, d) < 22m+1. 

THEOREM 8. For a feasible, Dual-VD, ESI model pcBc(m, d) < 2m+1 

11. Linear programs without nonnegativity constraints. We now want to consider 
linear programs of the form 

mincTx, Ax >b, A E Rnd, n > d. (P) 

It is well known that such a problem, which does not include sign constraints, can be 
presented in equivalent form (P) with sign constraints. We shall show that the Row 
Sign Invariance assumption on (P) is equivalent to ESI on (P). This will enable us to 
use the results of previous sections. 

Define first 

A1 bl A -' b -' 
A2. b2 

where A1, Rx, bl E R , m = n - d, c '= cTA1 1, A := A2A , b := b - A2A1b. 
Then the equivalent LP is: 

mincTx, Ax b, A Rmxd, , 0. ( ) 

LEMMA 3. A model of (P) is RSI if and only if the corresponding model on (P) is 
ESI. 
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PROOF. Let us use the notation of sign matrices, introduced in ?7. Let J, E Rdxd, 
J2 E R"Xm be sign matrices. Let P(J1, J2) be the problem P with the corresponding 
sign assignment to the rows: 

mincTx, J1Alx > Jlbl, J2A2x > J2b2. P(J, J) 

The first set of inequalities is equivalent to 

J1Ax - u = Jlbl for some u E R, u > 0. 

or, since J = J- 1, 

x = A-'b + A41J1u, u > 0. 

Introduce x into the second set of inequalities to get: 

J2A2[A1blb + A'Jlu] > J2b2 or J2AJ1u > J2b. 

And using the expression for x in the objective function, 

c T = CT[A1lbl + A41J1u] = cTJ1u + constant. 

So P(J1, J2) is equivalent to 

minc JTu, J,AJ-u JUb, u 0. P(J1, J2) 

Under the RSI assumption for (P), all the 2" instances P(J1, J2) are equiprobable. So 
by the equivalence just established all the instances P(J1, J2) are also equiprobable. So 
P is ESI. The converse follows in the same way. 

By the above discussion we see that the problems without sign constraints can be 
dealt with in the same manner as those discussed earlier. In particular Lemma 3 and 
Corollary 4 imply: 

THEOREM 9. For a model of LPPs of the form (P), assuming TWR, RSI 

PPCBC(n, d) < 2(8 + 1)1.58 where 8 := min(n - d, d). 

And Lemma and Theorem 6(b) imply: 

THEOREM 10. For a model of LPPs of the form (P) assuming TVD, RSI 

PcBc(n, d) < 28+l where 8 := min(n - d, d). 

Since (P) is ESI if and only if the matrix 

vJ b 
I O 

is RSI, this section just clarifies that the sign constraints do not play any special role in 
either the model or the algorithm. 

12. A generalized CBC Algorithm. We now present and analyze a generalized 
version of the CBC Algorithm. In the PCBC Algorithm we allowed only efficient basic 
solutions to be used in every stage. In the CBC Algorithm we allowed all primal 
feasible bases to be used. In the Generalized CBC (GCBC) Algorithm presented below 
we relax that requirement and allow the use of both feasible and infeasible bases in each 
stage. The only requirement we make is that the algorithm should proceed in a 
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constraint-by-constraint manner, hence reaching the kth subproblem only if the 
(k - 1)st is feasible. 

We shall show that under our probabilistic models the GCBC Algorithm still 
maintains an average of constant time when d is fixed for any m. We also show that 
the "Big M" method for Phase I together with Bland's rule are a special case of the 
GCBC. 

Statement of the GCBC Algorithm: 
Stage 0: Let s be the unique basis of X). 
s is also a feasible basis. Go to Stage 1. 
Stage k (1 < k < m - 1): Scan bases (both feasible and infeasible) of X(k) until 

either 
(1) a feasible basis s of X(k) is found. Go to Stage k + 1, or 
(2) Infeasibility of X(k) is demonstrated. Stop, X = (. 
Stage m: Scan bases of X until either 
(1) Infeasibility of X is demonstrated. Stop, X = (, or 
(2) An optimal or unbounded solution is found. 

Analysis for the ESI model. Stage k is reached only if X(k-l) is feasible. The 
probability of X(k-l) being feasible is [AB2]: 

i=O 
2-(k+d-1) E 

(k+ d 
1 

If that stage is reached, at most all vertices in that d-arrangement can be pivoted on, 
and their number is ( 

k ). Hence an upper bound on the expected number of pivots 
is: 

(k + d)2-(kd-1) (k + d - 1 

k d i ' k=1 i-=0 

Partition the sum on k to k = 1,..., d and k = d + 1,..., m. The first sum gives: 

k+d-(k+d-) E k k+ d- 1) d 
2 

k=d1 i=0 

d 
2E k2 d2) k) 

() (d + 1) = 0{(d 22d). 

<2(d + 1) (k + d)2-(k+d)(k + d- 1) 

k-k-d1 
mr^ d ]1 ,,y i ] 

k=d+l 
=2(d+l) E (k+ -(+)(k+ d-d) 

<2(d + 1) E ( i- 0(2d) 
= 2d+ 

where the last equality follows from Lemma C in the Appendix. 
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So we conclude: 

THEOREM 11. For TWR, ESI model 

PGCBc(m, d) = 0(24A). 

Analysis of a RSI model. Recall that in this model we have d fixed nonnegativity 
constraints, and only the m matrix inequalities change their directions. So there are 2k 
subinstances in the subproblem containing k matrix inequalities and d nonnegativity 
constraints. Observe that the nonnegativity constraints can only eliminate some of the 
cells generated by the matrix constraints but they cannot add new feasible cells. So the 
total number of cells in stage k is bounded by the total number of cells generated by 
the matrix inequalities. This number is 2k if k < d and Ed 

k if k > d [Bu] So we 
conclude: 

1 if k < d 

Pk := Pr[an instance in stage k is feasible] < -k d() if k d. " 
ia if k > d. 

( k?d =0i 

In stage k there are ( +) bases, and the GCBC algorithm may 'visit' them only if 
X(k-1) is feasible. Hence 

PcBc(m, d) < E Pk-1( d 
k=1 

E2d+ d + (k d)2 (k+d) (k- k=O 
d 

kd+l di=O i 

(2d+ 1 )+2d (k+d )- d-1 i k - 1 d+- d k=d+1 d i=) 

=(2d +i+2 f (k+d)2-(k+d-1)o (k+-1) 
.k=d+l d i=O 

< 0(22d) + 2d 0(24d)= 0(25d) 

where the last inequality follows since the term in square parentheses is just the second 
sum analyzed in the previous proof. 

So we conclude: 

THEOREM 12. In the WR, RSI model PGCBC(m, d) = 0(25d). 

Relation to Blands algorithm. Let us now investigate the relation of the GCBC 
algorithm to Bland's rule. Bland's algorithm [Bln] maintains primal feasibility and in 
every iteration the next variable chosen to enter the basis is the one with the least index 
which has a negative reduced cost coefficient. Bland's rule for breaking ties in the ratio 
test to determine the variable that leaves the basis is an important feature of 
lhis method but does not concern us here, since our model implies nondegeneracy 
with probability one. In other words, if c is the current reduced cost vector, then 
min{ ijc < O} is the index of the entering variable. So variable t + 1 enters the basis 
only if the subproblem 

t t 

min cixi, s.t. Aijxj > bi, i= l,...,m, x > 0, pt) 

i=1 j=1 

has an optimal solution. 
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The corresponding dual subproblem is 

maxbTy, Ay < k, k = 1,...,t, y > . D(t) 

So in terms of the dual problem Bland's algorithm maintains dual feasibility and 
proceeds in a constraint-by-constraint manner, reaching subproblem D(t+l) only if 
D(t) is optimal. 

In the above discussion we did not specify how Bland's algorithm is initialized. In 
fact, Bland does not specify that himself, since he describes a pivoting rule which may 
be implemented in any algorithm maintaining primal feasibility. One possible way to 
obtain initial feasibility is by introducing an artificial variable: 

min Mxo + cTx, 

xoe + Ax > b, 

X0,x>O0, x0,MER, e:=(1,1,..., 1) Rm. P(M) 

A starting feasible solution for solving P(M) is (xo, x) = (bk, 0) where bk = maxibi. 
(We assume that b < 0, since otherwise x = 0 is feasible and no artificial variable is 
needed). If M is sufficiently large, a finite solution to P(M) with xo > 0 implies that P 
is infeasible, and an unbounded solution with x0 > 0 implies P is unbounded. This 
method is known as the "Big M" method [D], [Ch]. 

Assume now that the "Big M" method is used for initialization, and the Bland rule 
is used for pivoting. The dual subproblem is stage k is: 

max bTy, eTy<M, A y <ck, k=1,...,t, y >O. D() 

If we assume that the dual data are sampled from a RSI distribution, then the 
situation is very similar to that analyzed in the previous subsection. The only difference 
is that the extra constraint eTy < M is present in all subproblems. Since all instances 
satisfy y > 0 in this model, then the same constraint eTy < M can be used to bound 
all instances. Also, by choosing M sufficiently large, no feasible cells in D(k) are 

eliminated in D((y)). So we can carry the same analysis replacing (k+d+l) by 
k + d + 2) and the same upper bound is obtained. Summarizing the above we get: 

THEOREM 13. The Simplex variant obtained by "Big M" initialization and Bland's 

pivoting rule has the following properties: 
(1) It performs a sequence of pivots corresponding to a special case of the GCBC 

algorithm (with an extra bounding constraint) in the dual problem. 
(2) If the data are dual-WR and ECSI, then it requires on the average no more than 

0(25m) pivots, independent of d. 

Note that a better bound may be obtained for the Big M-Bland algorithm by taking 
into account the fact that only dual feasible bases can be pivoted on. 

13. Summary and discussion. We have presented a family of Simplex variants 
which proceed in a constraint-by-constraint manner, and have described three succes- 
sively more general algorithms within this family. The main features of these al- 

gorithms are summarized in Table 1. 
The probabilistic models we used required certain weak regularity condition and 

sign invariance properties. The sign invariance requirements for the models are 
summarized in Table 2. 
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TABLE 1 

Properties of the Algorithms within Every Stage. 

Primal Free Choice within 
Algorithm Property Feasibility Cooptimality the Algorithm 

PCBC preserved preserved Starting objective 
CBC preserved not preserved Any primal algorithm can 

be used in every stage. 
GCBC not preserved not preserved Any basis enumeration algorithm 

can be used in every stage. 

TABLE 2 

Sign invariance properties of the probabilistic models. 

(Invariance is stated for fixed data A, b, c inducing the LP 
min cTx, Ax > b, x > 0.) 

Invariance with respect to all 
The Model sign changes in 

CSI columns of A 

ECSI columns of [c] 

RSI rows of [A,b] 
SI columns of A, rows of [A, b] 

ESI columns of c ]rows of [A, b] 
[A J 

The upper bounds obtained for the expected number of pivots performed by each 
algorithm under each model are summarized in Table 3. 

Leaving aside the feasible models for a moment, we see that all three algorithms 
require a number of pivots bounded by functions of d only. These functions vary with 
the algorithm and the model, but they are all exponential in d. 

These results seem "strong" when m > d, and specifically when d is fixed and m 
tends to infinity, since in that case p(m, d) is bounded by a constant. However, we 
believe that all these models have a basic problematic characteristic, which underscores 
these results: When m > d (d > m) all but a vanishing fraction of the problems 
generated by the models will be infeasible (unbounded) [AB2]. So in those situations 
we are essentially counting the number of pivots performed until infeasibility or 
unboundedness of the problem is demonstrated. It seems that detecting infeasibility or 
unboundedness is an easier problem than solving a comparable linear program which 
has an optimal solution. The reasoning is that while there are many bases which 
demonstrate infeasibility (or unboundedness) in an infeasible (unbounded) problem, 
there may be a unique optimal basis in an optimal problem, and it may take longer to 
find it. Hence the relevance of these results to the observed good performance of the 

TABLE 3 

Upper bounds on p(m, d) under several probabilistic models. 

Model Algorithm PCBC CBC GCBC 

RSI (d+ 1)2d1 22d+1 0(25d) 
SI 2(d + 1)1.5d 2d+1 0(25d) 

ESI 2(A + 1)1.5a 2A+1 0(24A) 
feasible, ECSI (m + 1)2+ 1 22m+1 

feasible, dual-SI 2(m + 1)1.5m 2m+ 1 
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Simplex method is questionable. It is still possible, of course, that for the same models 
and the same algorithms better bounds will be obtained (perhaps polynomial rather 
than exponential in d) rendering the results more meaningful.1 

Another interpretation of the results, closely related to the above discussion, is 
the following: The seemingly good behavior of the algorithms is mainly due to the 
probabilistic models we used, and not due to the Simplex method. The CBC and the 
GCBC algorithms are very general procedures, and can be viewed as enumeration 
algorithms. The GCBC is more of a "reductio ad absurdum " than a practical algorithm, 
since it satisfies only the Constraint-by-Constraint idea. Namely, it may scan all bases 
of p(k), but it will do that only if p(k-l) is feasible. After about d2 constraints the 
probability of an instance being feasible is minute, and it decreases with k more 
rapidly than the number of bases grows with k [AB2]. So the contribution to the 
expected number of pivots by additional constraints is negligible, and even an 
enumeration algorithm yields an expected number of pivots bounded by a function of 
d only. Again this does not exclude the possibility of improved analysis for the PCBC 
algorithm, reflecting on the nature of the Simplex method rather than on the model.2 

Our models generalize Smale's original probabilistic model [S1], but do not apply to 
his second, more general model [S2], which assumes symmetry with respect to coordi- 
nate permutations, rather than symmetry with respect to rotations. However, Smale's 
results for both models have been obtained for fixed d and m -> oo, and it was later 
demonstrated by Blair [Blr] that in that case most of the "good behavior" of the 
algorithm is due to the small chance of a column to be in any basis generated by the 
algorithm. So again this is still a reflection more on the model than on the Simplex 
variant used. Note, however, that there is no direct relationship between our results 
and those of Smale and Blair, since their algorithm is not a member of the family we 
consider. 

Let us now turn to the feasible models: The results we obtained for the feasible 
models depend only on m, the number of matrix constraints. When m is fixed and the 
number of variables increases in these models, almost all instances will become 
unbounded. This raises the same difficulty with interpreting our results as before. 
Borgwardt [Bo2], however, gets a result of order d4 * m for another feasible model. By 
fixing d and increasing m the probability of the problem being both feasible and 
bounded in his model tends to one. Hence Borgwardt does get a polynomial bound for 
this case which we consider more difficult. 

The fact that Bland's rule can be viewed as a dual Constraint-by-Constraint 
procedure is also interesting. We suspect that some other Simplex variants may also 
have this property "in disguise", and recognizing this property may facilitate their 
probabilistic analysis. Borgwardt's full (Phases I-II) algorithm is also a variable-by- 
variable algorithm, presentable as a CBC-like algorithm after dualizing. However, his 
algorithm was presented only in the context of linear programs without nonnegativity 
constraints for which the zero vector is feasible, and it cannot be used to solve general 
linear programs which do not assume these properties. 

A final note. There have been several interesting developments related to this work: 
1. Megiddo [Mel] showed that the Self-Dual Simplex variant requires on the average 

at most c(d) pivots, under the same probabilistic assumptions made by Smale in [S1]. 
So his result is of the same type as ours. The constant c(d) he gets is, however, 
superexponential in d. 

lSee the final note to this section. 
2See the final note to this section. 
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2. Todd [T] and Adler and Megiddo [AM] obtained an O(min(m, d)2) bound on the 
expected number of pivots for the Self-Dual variant of the Simplex algorithm with a 
special kind of initialization. Under the same probabilistic assumptions we managed to 
show [AKS] that the PCBC Algorithm, when used with a special starting objective 
(rather than with e, as presented here), maintains an average number of pivots which is 
at most quadratic in min(m, d), under the ESI model with slightly stronger regularity 
conditions. 

3. After the completion of these three investigations, Megiddo [Me2] observed that, 
although the PCBC algorithm and the Self-Dual algorithm are in general quite 
different, the special initialization schemes used in the analyses result in the execution 
of exactly the same sequence of pivots in both algorithms. Thus all three investigations 
are concerned with the same Simplex variant. The analysis employed by Todd [T] and 
by Adler and Megiddo [AM] yielded a slightly better constant coefficient in the time 
bound. Under a somewhat stronger probabilistic assumption Adler and Megiddo [AM] 
obtained a quadratic lower bound on the expected number of pivot steps. 

APPENDIX 

LEMMA A. For every integer i 

k=i2( i )= 2. 

PROOF. By induction on i: 

For i = 0, E 0 - = 2. 

Fori=l, E_ 
1 

=2 For i = 1, Fa k = ( ) 2k 2. 
k=l 1 k=l 2 

Assume that for i, 

F(i) .= E i 2. 
k=i 

Then 

00 1 ( k k i - k 

= 2F(i + 1) + 2 * 2 by the induction hypothesis. 

So 

-F(i + 1)= 1 -- F(i + 1) = 2. 
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LEMMA B. 

J2-k < 2 * 1.5d km 
d 

j= d)( 

with equality for m -* oo. 

PROOF. 

m d 
k{ ) ( ) 

k= j=O J j 

d d i\ m { i \ 

-E 2- E 2 -k 

j0 J k= 1 J 

< 2 ~ 2-j d by Lemma A 
j=0 

=2~(d d)()+ 
j=0 

= 2 1 + = 2 1.5d by the Binomial Theorem. 

And the only inequality we used is tight for m -- oo. 

LEMMA C. 

7)22-= 
I=2m 

O -* 24m). 
m 

PROOF. 

00 / I \2 

=2m 1=2m 

2m + 2-2 -2m 

j=0 
m 

=--2m : (2m 2m+1 2m+2 2m +j12 
o m m+lA 

' 
m+2 m+j 

j=0 

Note that (2m + j)/(m + j) < 2 for all j, and for j > 2m, (2m + j)/(m + j) < 4/3. 
So 

< 22m(2m)\ ( (2j)22- + 
j=o 

.(22m( -) 2)2 
' 

2-i 

-21 2 m(2m 22M + 24m 
0 

(9 )j- 2m =2-22 )22m + 24m E 9 
2- 

j=2m1 

- 2 m 2m (22m + 24m2-2m _ ( ) 

-2 2m 22m + 22m \= o10 2m 
2 

=2 m 2 1 -- 8/9 m ' 
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Since 

m ^ 

the result follows. 
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