THE COUPON-COLLECTOR'S PROBLEM REVISITED

ILAN ADLER,* SHMUEL OREN * AND SHELDON M. ROSS,* ** University of California, Berkeley

Abstract

Consider the classical coupon-collector's problem in which items of m distinct types arrive in sequence. An arriving item is installed in system $i \ge 1$ if i is the smallest index such that system i does not contain an item of the arrival's type. We study the expected number of items in system j at the moment when system 1 first contains an item of each type.

Keywords: Coupon-collector's problem; hyperharmonic numbers; Poissonization

AMS 2000 Subject Classification: Primary 60C05

1. Introduction

Consider the classical coupon-collector's problem with *m* distinct types of items. The items arrive in sequence, with the types of the successive items being independent random variables that are each equal to *k* with probability p_k , $\sum_{k=1}^m p_k = 1$. An arriving item is installed in system $i \ge 1$ if *i* is the smallest index such that system *i* does not contain an item of the arrival's type. Let U_j^m , $j \ge 2$, denote the number of unfilled types in system *j* when system 1 first contains an item of each type. Foata *et al.* [2] and Foata and Zeilberger [1], using nonelementary mathematics, obtained recursive formulae and generating functions for $E[U_j^m]$ for the equally likely case, where $p_k = 1/m$. In Section 2 we derive, using basic probability, the recursion and a closed-form expression for $E[U_j^m]$ for the equally likely case. The general case is considered in Section 3 where an exact expression and bounds for $E[U_j^m]$ are determined. Comments concerning computation, as well as a simulation approach, are also presented in Section 3.

2. The equally likely case

Assume, in this section, that all $p_k = 1/m$. Furthermore, assume that the problem ends when system 1 has one item of each type, and let A_j^k denote the event that at least j type-k coupons have arrived. With 1(A) denoting the indicator variable for the event A,

$$U_j^m = \sum_{k=1}^m [1 - \mathbf{1}(A_j^k)].$$

Received 10 December 2002; revision received 20 January 2003.

^{*} Postal address: Department of Industrial Engineering and Operations Research, University of California, Berkeley, CA 94720, USA.

^{**} Email address: smross@ieor.berkeley.edu

Research supported by the National Science Foundation Grant ECS-0224779 with the University of California.

Thus,

$$E[U_j^m] = \sum_{k=1}^m [1 - P(A_j^k)]$$

= m[1 - P(A_j^m)]. (1)

Let $B_{j,i}^m$ denote the event that at least j type-m coupons arrive before the first coupon of type *i* arrives. Then

$$\mathbf{P}(A_j^m) = \mathbf{P}\left(\bigcup_{i=1}^{m-1} B_{j,i}^m\right)$$

and the inclusion–exclusion probability equality give (for $j \ge 2$)

$$P(A_j^m) = \sum_{k=1}^{m-1} (-1)^{k+1} \sum_{i_1 < i_2 < \dots < i_k} P(B_{j,i_1}^m \cdots B_{j,i_k}^m)$$
$$= \sum_{k=1}^{m-1} (-1)^{k+1} {m-1 \choose k} \left(\frac{1}{k+1}\right)^j.$$

Using (1), this gives the following result.

Proposition 1. For $j \ge 2$,

$$\mathbb{E}[U_j^m] = \sum_{i=1}^m \binom{m}{i} \frac{(-1)^{i+1}}{i^{j-1}}$$

Next, using basic probability arguments, we obtain a recursive expression for $E[U_i^m]$ that was first presented in [1] and [2]. Let C_j^k be the event that at least j type-k coupons have already arrived at the moment when each of the item types $1, \ldots, k-1$ has arrived. Also, let X^k be the number of types $1, \ldots, k-1$ that have not yet arrived when the first coupon of type k arrives. With $P_i^k = P(C_i^k)$, we obtain that

$$P_{j}^{k} = \sum_{r=0}^{k-1} P(C_{j}^{k} \mid X^{k} = r) P(X^{k} = r)$$
$$= \frac{1}{k} \sum_{r=0}^{k-1} P_{j-1}^{r+1}$$
$$= \frac{1}{k} \sum_{r=1}^{k} P_{j-1}^{r}, \qquad (2)$$

where $P_1^k = (k-1)/k$ for k = 1, 2, ...Substituting $A_j^m = C_j^m$ for $j \ge 2$ into (1) gives

$$E[U_j^m] = m[1 - P_j^m], \qquad j \ge 2.$$
 (3)

Thus, using (2) and (3), we obtain that

$$\mathsf{E}[U_2^m] = m - \sum_{r=1}^m \frac{r-1}{r} = \sum_{k=1}^m \frac{1}{k}$$

514

and, for $j \ge 3$,

$$E[U_j^m] = m - \sum_{k=1}^m P_{j-1}^k$$

= $m - \sum_{k=1}^m \left(1 - \frac{E[U_{j-1}^k]}{k}\right)$
= $\sum_{k=1}^m \frac{E[U_{j-1}^k]}{k}.$

We have thus proven the following.

Proposition 2. We have

$$\mathbb{E}[U_2^m] = \sum_{k=1}^m \frac{1}{k}$$

and, for $j \geq 3$,

$$\mathbb{E}[U_j^m] = \sum_{k=1}^m \frac{\mathbb{E}[U_{j-1}^k]}{k}.$$

Remark 1. Equating the two expressions for $E[U_j^m]$ given by Propositions 1 and 2 yields an explicit expression for the *hyperharmonic number*, which is defined in [2] by the recursive formula given in Proposition 2.

3. The general case: Poissonization

In the general case, we suppose that each item is of type k with probability p_k , $\sum_{k=1}^{m} p_k = 1$. To analyze this case, let us start by assuming that, rather than stopping when system 1 is filled, items continue coming forever. Suppose also that successive items arrive at times distributed according to a Poisson process with rate 1. Under this scenario, the arrival processes of the distinct types are independent Poisson processes, with respective rates p_k , k = 1, ..., m. Because $1 - P(A_j^k)$ denotes the probability that there have been less than j type-k arrivals when system 1 becomes full, we obtain upon conditioning on the arrival time of the j th item of type k that

$$1 - P(A_j^k) = \int_0^\infty p_k e^{-p_k x} \frac{(p_k x)^{j-1}}{(j-1)!} \prod_{i \neq k} (1 - e^{-p_i x}) dx, \qquad j \ge 2.$$
(4)

The expected number of unfilled slots in system j is now obtained from

$$E[U_j^m] = \sum_{k=1}^m [1 - P(A_j^k)], \qquad j \ge 2.$$
(5)

The following lemma will be used to obtain bounds on $E[U_i^m]$.

Lemma 1. For positive values x_i , $\prod_{i=1}^r (1 - e^{-x_i})$ is a Schur concave function of $y = (y_1, \ldots, y_r)$, where $y_i = \ln(x_i)$.

Proof. With $y = \ln(x)$,

$$\frac{\partial}{\partial y}(1-\mathbf{e}^{-x})=x\mathbf{e}^{-x}.$$

Because ln(x) in increasing in x, by the Ostrowski condition for Schur concavity (see [3]) it suffices to show that

$$x_1 e^{-x_1} (1 - e^{-x_2}) > x_2 e^{-x_2} (1 - e^{-x_1})$$
 if $x_1 < x_2$.

But this inequality follows because $xe^{-x}/(1-e^{-x})$ is a decreasing function of x.

Lower and upper bounds on $E[U_j^m]$, fairly tight for values of (p_1, p_2, \ldots, p_m) close to $(1/m, 1/m, \ldots, 1/m)$, can be obtained from the inequalities

$$(1 - e^{-m_k x})^{m-1} \le \prod_{i \ne k} (1 - e^{-p_i x}) \le (1 - e^{-g_k x})^{m-1},$$
(6)

where $m_k = \min_{i \neq k} \{p_i\}$ and $g_k = (\prod_{i \neq k} p_i)^{1/(m-1)}$. That is, g_k is the geometric mean of the values p_i for $i \neq k$. The second inequality of (6) follows from Lemma 1.

We obtain from (4) and (6) that

$$1 - P(A_j^k) \le \int_0^\infty p_k e^{-p_k x} \frac{(p_k x)^{j-1}}{(j-1)!} (1 - e^{-g_k x})^{m-1} dx$$

= $\sum_{r=0}^{m-1} {m-1 \choose r} (-1)^r \int_0^\infty p_k e^{-(rg_k + p_k)x} \frac{(p_k x)^{j-1}}{(j-1)!} dx$
= $\sum_{r=0}^{m-1} {m-1 \choose r} (-1)^r \left(\frac{p_k}{rg_k + p_k}\right)^j \int_0^\infty \lambda e^{-\lambda x} \frac{(\lambda x)^{j-1}}{(j-1)!} dx$
= $\sum_{r=0}^{m-1} {m-1 \choose r} (-1)^r \left(\frac{p_k}{rg_k + p_k}\right)^j$,

where $\lambda = rg_k + p_k$. Substituting the preceding inequality into (5) and considering both inequalities of (6) gives

$$\sum_{r=0}^{m-1} \binom{m-1}{r} (-1)^r \sum_{k=1}^m \left(\frac{p_k}{rm_k + p_k}\right)^j \le \mathbb{E}[U_j^m] \le \sum_{r=0}^{m-1} \binom{m-1}{r} (-1)^r \sum_{k=1}^m \left(\frac{p_k}{rg_k + p_k}\right)^j.$$
(7)

We will now derive a second set of lower and upper bounds for $E[U_j^m]$. Let $B_{j,i}^k$ denote the event that at least *j* coupons of type *k* arrive before the first of type *i* arrives. Then, using the conditional expectation inequality (Proposition 3.2.3 of [5]), we obtain that

$$P(A_{j}^{k}) = P\left(\bigcup_{i \neq k} B_{j,i}^{k}\right)$$

$$\geq \sum_{i \neq k} \frac{P(B_{j,i}^{k})}{1 + \sum_{r \neq i,k} P(B_{j,r}^{k} + B_{j,i}^{k})}$$
(8)

$$=\sum_{i\neq k}\frac{(p_k/(p_k+p_i))^j}{1+\sum_{r\neq i,k}((p_k+p_i)/(p_k+p_i+p_r))^j},$$
(9)

where (8) follows from the conditional expectation inequality and (9) from

$$P(B_{j,r}^{k} | B_{j,i}^{k}) = \frac{P(B_{j,r}^{k} B_{j,i}^{k})}{P(B_{j,i}^{k})}$$
$$= \frac{(p_{k}/(p_{k} + p_{i} + p_{r}))^{j}}{(p_{k}/(p_{k} + p_{i}))^{j}}$$
$$= \left(\frac{p_{k} + p_{i}}{p_{k} + p_{i} + p_{r}}\right)^{j}.$$

Therefore, we obtain our second upper bound for $E[U_j^m] = \sum_{k=1}^m [1 - P(A_j^k)]$:

$$\mathbb{E}[U_j^m] \le m - \sum_{k=1}^m \sum_{i \ne k} \frac{(p_k/(p_k + p_i))^j}{1 + \sum_{r \ne i,k} (p_k + p_i)^j/(p_k + p_i + p_r)^j}.$$
 (10)

To obtain a lower bound, let X_i denote the time of the first type-*i* event, and let T_j^k denote the time of the *j*th type-*k* event in the Poissonization scheme (which results in T_j^k and X_i for $i \neq k$ being independent). Then, from (4),

$$1 - \mathbf{P}(A_j^k) = \mathbf{E}\left[\prod_{i \neq k} (1 - \mathrm{e}^{-p_i T_j^k})\right].$$

Using the well-known result that $E[f(X)g(X)] \ge E[f(X)]E[g(X)]$ whenever f and g are increasing functions [4, p. 339], which easily generalizes to the product of any number of positive increasing functions, the preceding equation yields that

$$1 - P(A_j^k) \ge \prod_{i \ne k} E[1 - e^{-p_i T_j^k}]$$
$$= \prod_{i \ne k} P(T_j^k > X_i)$$
$$= \prod_{i \ne k} [1 - P(T_j^k < X_i)]$$
$$= \prod_{i \ne k} \left[1 - \left(\frac{p_k}{p_i + p_k}\right)^j \right]$$

Thus, we have the lower bound

$$\mathbb{E}[U_j^m] \ge \sum_{k=1}^m \prod_{i \neq k} \left[1 - \left(\frac{p_k}{p_i + p_k}\right)^j \right].$$
(11)

Remark 2. (i) Our computational experiments verify that the bounds given in (7) work well for probabilities p_i which are roughly the same, while the bounds given in (10) and (11) are tighter otherwise.

(ii) For the equal-probabilities case, the explicit expression for $E[U_j^m]$ of Proposition 1 is faster to compute than the recursive expression of Proposition 2. However, for large m (say $m \ge 150$), the explicit expression (but not the recursive one) is computationally unstable.

(iii) For very large *m*, simulation can be employed to efficiently estimate $E[U_j^m]$. The following simulation approach estimates $1 - P(A_j^k)$ by a conditional expectation estimator that conditions on the arrival time of the *j*th item of type *k*; the estimator is then further improved by the use of antithetic variables.

- Generate random numbers U_1, \ldots, U_j ;
- let $L_1 = \ln(\prod_{i=1}^{j} U_i)$ and $L_2 = \ln(\prod_{i=1}^{j} (1 U_i));$
- set

$$V = \frac{1}{2} \sum_{k=1}^{m} \left[\prod_{i \neq k} (1 - e^{p_i L_1 / p_k}) + \prod_{i \neq k} (1 - e^{p_i L_2 / p_k}) \right].$$

The preceding should be repeated many times, with the estimator of $E[U_j^m]$ being the average of the values of V obtained.

References

- [1] FOATA, D. AND ZEILBERGER, D. (2002). The collector's brotherhood problem using the Newman–Shepp symbolic method. To appear in *Algebra Univ.*
- [2] FOATA, D., GUO-NIU, H. AND LASS, B. (2001). Les nombres hyperharmonique et la fratrie du collectionneur de vignettes. Sem. Lothar. Combinatoire 47, B47a (electronic).
- [3] MARSHALL, A. W. AND OLKIN, I. (1979). Inequalities: Theory of Majorization and Its Applications (Math. Sci. Eng. 143). Academic Press, New York.
- [4] Ross, S. M. (1996). Stochastic Processes, 2nd edn. John Wiley, New York.
- [5] Ross, S. M. (2002). Probability Models for Computer Science. Academic Press, New York.