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Abstract 

Consider the classical coupon-collector's problem in which items of m distinct types 
arrive in sequence. An arriving item is installed in system i > 1 if i is the smallest index 
such that system i does not contain an item of the arrival's type. We study the expected 
number of items in system j at the moment when system 1 first contains an item of each 

type. 
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1. Introduction 

Consider the classical coupon-collector's problem with m distinct types of items. The items 
arrive in sequence, with the types of the successive items being independent random variables 
that are each equal to k with probability pk, Ek=l Pk = 1. An arriving item is installed in 

system i > 1 if i is the smallest index such that system i does not contain an item of the arrival's 

type. Let UJ, j > 2, denote the number of unfilled types in system j when system 1 first 
contains an item of each type. Foata et al. [2] and Foata and Zeilberger [ 1], using nonelementary 
mathematics, obtained recursive formulae and generating functions for E[UT] for the equally 
likely case, where pk = 1/m. In Section 2 we derive, using basic probability, the recursion and 
a closed-form expression for E[Uj] for the equally likely case. The general case is considered 
in Section 3 where an exact expression and bounds for E[Uj] are determined. Comments 

concerning computation, as well as a simulation approach, are also presented in Section 3. 

2. The equally likely case 

Assume, in this section, that all Pk = 1/m. Furthermore, assume that the problem ends 
when system 1 has one item of each type, and let Ak denote the event that at least j type-k 
coupons have arrived. With 1(A) denoting the indicator variable for the event A, 

m 

U? = E[1 
- 1(Ak)]. 

k=l 
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Thus, 
m 

E[Um] = E[1- P(Ak)] 
k=l 

=m[l - P(Am)]. (1) 

Let Be. denote the event that at least j type-m coupons arrive before the first coupon of 
J,I 

type i arrives. Then 
m-1 

P(A) = P( Bji) 

and the inclusion-exclusion probability equality give (for j > 2) 

m-1 

:(,~)_C-i)k+l P(BTmi ... B ) P(A7) = (-1)k+ L 
E P(Bj,, * BJ,ik 

k=1 il<i2<' <ik 

m-l 

= ( -1)k+l m-(k I) 
k=l 

Using (1), this gives the following result. 

Proposition 1. For j > 2, 

m (m) 
i-j 

Next, using basic probability arguments, we obtain a recursive expression for E[Uj ] that 

was first presented in [1] and [2]. Let Ck be the event that at least j type-k coupons have already 

arrived at the moment when each of the item types 1,..., k - 1 has arrived. Also, let Xk be the 
number of types 1, ..., k - 1 that have not yet arrived when the first coupon of type k arrives. 
With Pk = P(Ck), we obtain that 

k-I 

k = P (Ck Xk =r) r)(X r 

r=O 

k-I 
-= ? ' pr+l 

k / -1 
r=O 

k 

-k E -i (2) 
r=l 

where Pk = (k - 1)/k fork = 1, 2,.... 
Substituting Am = Cm for j > 2 into (1) gives 

E[Um] = ml - Pm], j 2. (3) 

Thus, using (2) and (3), we obtain that 

m 
r 

m 

E[U=] =- m - r - 
r=l k r=1 k=l 
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and, for j > 3, 
m 

E[U7] =m-E Pi- k -i k=l 

= m-E(1 -E[UJ-k 
I 

_ E[U_1] k=l 
m E[O 

We have thus proven the following. 

Proposition 2. We have 
m 

E[U2 ] = k 
k=l 

and, for j > 3, 
m E[Uk_ ] 

E[Uj?] =j E 
k=l 

Remark 1. Equating the two expressions for E[UJ'] given by Propositions 1 and 2 yields an 

explicit expression for the hyperharmonic number, which is defined in [2] by the recursive 
formula given in Proposition 2. 

3. The general case: Poissonization 

In the general case, we suppose that each item is of type k with probability Pk, Lkml Pk = 1. 
To analyze this case, let us start by assuming that, rather than stopping when system 1 is filled, 
items continue coming forever. Suppose also that successive items arrive at times distributed 

according to a Poisson process with rate 1. Under this scenario, the arrival processes of the 
distinct types are independent Poisson processes, with respective rates Pk, k = 1, ..., m. 
Because 1 - P(Ak) denotes the probability that there have been less than j type-k arrivals when 

system 1 becomes full, we obtain upon conditioning on the arrival time of the jth item of type k 
that 

1 P(Ak 0I pkPkX (pkx)'j- 1- P(Aj) pke-PX ( ) n - -e-Pix)dx, j > 2. (4) 

The expected number of unfilled slots in system j is now obtained from 

m 

E[UJ7] = Z[1 - P(A5)], j > 2. (5) 
k=1 

The following lemma will be used to obtain bounds on E[UJ]. 

Lemma 1. For positive values xi, f1=l (1 - e-xi) is a Schur concave function of y = 

(Y1, , Yr), where yi = ln(xi). 
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Proof With y = In(x), 

-(1 -e-X) = xe-X 
ay 

Because ln(x) in increasing in x, by the Ostrowski condition for Schur concavity (see [3]) it 
suffices to show that 

xle-I (1-e-X2) > x2e-X2(1 -e-X) if XI < x2. 

But this inequality follows because xe-X /( - e-X) is a decreasing function of x. 

Lower and upper bounds on E[UJ], fairly tight for values of (Pl, P2, .... P) close to 

(1/m, l/m, .., l/m), can be obtained from the inequalities 

(1 - e-mkx)m-1 < 
nH( - ePix) < (1 - e- ") (6) 
i#k 

where mk = minigk{pi) and gk = (f-ifk Pi)l/(m-l) That is, gk is the geometric mean of the 
values pi for i : k. The second inequality of (6) follows from Lemma 1. 

We obtain from (4) and (6) that 

1 - P(AJ) < ke PkX (p k ' 
(1 - e-gkx)m-1 dx 

- (j - 1)I 

m- p-(rm-+Pk)x (PkX)j- l 
m= (m- 1)(l)r ke-(rgk+ P k) dx 

r=O 

where A = rgk + Pk. Substituting the preceding inequality into (5) and considering both 

inequalities of (6) gives 

r= r rgk + Pk (j-)! 

= ri (m - 1 )(rl( Pk ) . 

~0^ ~ ~ ~ = r rgk + Pk Pk 

where X = rgk ? Pk. Substituting the preceding inequality into (5) and considering both 

E( r) ) r +pk < E[Um] < EI)r 
) 

r )rmk + Pk (r - rgl Pk 
r=0 k=l r=O k=lrgk?- 

(7) 
We will now derive a second set of lower and upper bounds for E[UJ ]. Let Bki denote the 

event that at least j coupons of type k arrive before the first of type i arrives. Then, using the 
conditional expectation inequality (Proposition 3.2.3 of [5]), we obtain that 

P(A?) 
- P(U Bj,i 

P(Bk, ) 
> p(Bj 

i) (8) 
i1 + P(M lB,) i 1 + Er:i,k J,r jk 

_ 1yF ? (Pk/(Pk + Pi))j 

i~k 
- 

r+ ri,k((Pk + Pi)/(Pk + Pi + Pr))' 
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where (8) follows from the conditional expectation inequality and (9) from 

P(BkrBki) 
P(Bj 

k Bk ) = n' 
,ir 

j,r ,i' P(Bkj P(Bj,) 

(Pk/(Pk + Pi + Pr))j 

(Pk/(Pk + Pi))' 

= ( Pk + Pi ) 
Pk + Pi + Pr J 

Therefore, we obtain our second upper bound for E[Uj ] = km1[1 - P(Ak)]: 

E[Ujm] <m-L 
m 

?(Pk/(Pk+ PiW (10) 
JE[? < 

m - Ek 1 + Erfi,k(Pk + Pi)J/(Pk + Pi + Pr (10) 

To obtain a lower bound, let Xi denote the time of the first type-i event, and let Tk denote 
the time of the jth type-k event in the Poissonization scheme (which results in Tk and Xi for 
i = k being independent). Then, from (4), 

1-P(A5)=E fl(-e-PT'k 
-i:k 

Using the well-known result that E[f(X)g(X)] > E[f(X)]E[g(X)] whenever f and g are 

increasing functions [4, p. 339], which easily generalizes to the product of any number of 

positive increasing functions, the preceding equation yields that 

1-P(Ak) > E[1-e PiT"] 

ifk 

= P(Tk > Xi) 
i#k 

= H[ - p(Tf < Xi)] 

i#k 

i9k- t-k -( Pi +Pk 
J 

Thus, we have the lower bound 

k= ik - ( ) Pk 

iO urputi l i if i i k 

Remark 2. (i) Our computational experiments verify that the bounds given in (7) work well 
for probabilities pi which are roughly the same, while the bounds given in (10) and (11) are 

tighter otherwise. 

(ii) For the equal-probabilities case, the explicit expression for E[Uj ] of Proposition 1 is faster 
to compute than the recursive expression of Proposition 2. However, for large m (say m > 150), 
the explicit expression (but not the recursive one) is computationally unstable. 
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(iii) For very large m, simulation can be employed to efficiently estimate E[UT]. The following 
simulation approach estimates 1 - P(Ak) by a conditional expectation estimator that conditions 
on the arrival time of the jth item of type k; the estimator is then further improved by the use 
of antithetic variables. 

* Generate random numbers Ul,..., Uj; 

* let L1 = ln(Fnl Ui) and L2 = ln(Ji(l - U)); 

* set 
1 m - 

V = E n (l -ePiLI/Pk) + I (l -ePiL21/p) 
k=l -i#:k i:k 

The preceding should be repeated many times, with the estimator of E[U ] being the average 
of the values of V obtained. 
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