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BENCHMARK PROBLEMS FOR TOTALLY UNIMODULAR SET
SYSTEM AUCTION

ILAN ADLER ∗ AND DORIT S. HOCHBAUM †

Abstract. We consider a generalization of the k-flow set system auction where the set to be
procured by a customer corresponds to a feasible solution to a linear programming problem where the
coefficient matrix and right-hand-side together constitute a totally unimodular matrix. Our results
generalize and strengthen bounds identified for several benchmarks, which form a crucial component
in the study of frugality ratios of truthful auction mechanisms.

1. Introduction. In a set system auction, a customer procure the services of a
subset of a set of available agents, each of whom quotes a specific amount (called a
bid) for the service. The customer must select from predetermined feasible subsets of
the agents, while minimizing total payments to the agents.

Several authors ([KKT05, CEGP10, CK07, GC10, KSM10]) have considered vari-
ants of set system auction problems in which the feasible sets are defined in the context
of networks where nodes or edges represent agents and the feasible sets are charac-
terized by network structures such as spanning trees; single and multi-paths; vertex
covers and cuts . An auction mechanism determines a selection scheme – that is, how
to decide on the set of winning agents, and how much to pay each of the winning
agents, although the mechanism can devise prices different from the bid values of
the agents. A desirable property of the mechanism is that is should be designed to
be truthful so that agents have no incentive to lie about their true cost of providing
service while quoting their bids.

This truthfulness feature results in premium payments to the agents that exceeds
the agents’ truthful bids, similar to the single agent case where the agent with the
winning bid can raise her bid up to the second lowest bid without affecting her position.
A key goal in designing auction mechanism is to minimize the additional costs to the
customer resulting from seeking truthful bids. A major theme within this stream of
research focuses on the notion of frugality that was introduced in [AT02] and extended
by [T03]. The frugality ratio measures the ratio of the payments made by a truthful
auction mechanism as compared to some benchmark which is intended to represent the
least cost auction mechanism that assures truthful biding. In [EGG07], two frequently
discussed benchmarks related to bids satisfying Nash equilibrium within the context
of several set auctions related to networks are analyzed. Both problems are defined as
optimization problems which share the same set of constraints and objective. In the
first benchmark problem, which was introduced in [KSM10], the objective function
is minimized, while in the second problem, which was introduced in [EGG07], the
objective function is maximized.

Two recent papers, [CEGP10] and [KSM10], present and discuss set auctions in
which the feasible subset corresponds to k disjoint s − t paths, which can be found
by solving a min cost k-flow problem (and thus the corresponding auction problem is
commonly called the k-flow auction problem). In particular, they prove several results
related to the two benchmark problems (associated with the k-flow auction problem)
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as discussed above. Our goal in this paper is to present a generalization of the k-flow
auction problem to a linear programming (LP) problem whose coefficient matrix and
right-hand-side together constitute a totally unimodular matrix. In particular, in this
more general setting, we provide novel simple proofs based on standard LP theory
for (and extend in one case) all the bounds related to the two associated benchmark
problems.

1.1. Contributions. Specifically, we propose a set system auction framework
that generalizes the k-flow auction problem. The feasible sets are defined in terms of
a partition of the columns of a totally unimodular matrix.

We denote by µ(k) (ν(k)) the optimal objective function value of the maximiza-
tion (minimization) benchmark problem. The formal definition of these benchmark
problems is given in Section 3. In [CEGP10], it is proved that for the k-flow auction
problem µ(k) ≥ k[φ(k+1)−φ(k)]. We prove that this inequality is in fact an equality

for the k-flow auction problem, and the equality applies in the more general setting
of total unimodularity.

Both [KSM10] and [CEGP10] present a pruned k-flow auction problem which
plays a key rule in analyzing the associated frugality ratios. Specifically, the pruned k-

flow auction problem is defined as a restriction on the k-flow auction problem in which
all edges who are not in the min cost solution of the original k-flow auction problem are
removed. We denote by µ̃(k) the optimal objective function value of the maximization
benchmark problem associated with the pruned problem. The precise definition of the
pruned problem is given in Section 3.1. For the k-flow auction problem, it is proved
in [KSM10] that µ(k) ≥ 1

k+1 µ̃(k), while it is proved in [CEGP10] that µ(k) ≥ µ̃(k).
We prove, for the more general case of total unimodularity, the same lower bound for
µ(k) as in [CEGP10]. We also provide an upper bound for µ(k) in terms of µ̃(k).

[CEGP10] presents a lower bound for ν(k). The key to this bound is a theorem,
first introduced in [GC10], related to a minimum cost k-flow problem with the property
that removing any single edge from the underlying network does not affect the total
minimum cost. We present a simpler proof of this theorem generalized to totally
unimodular matrices. We then proceed to use this theorem to prove a lower bound
for ν(k), which generalizes a similar bound established in [CEGP10] for the k-flow
case.

1.2. Notation and Preliminaries. Matrices are denoted by boldface, upper
case fonts, e.g. A. Vectors are denoted by boldface, lower case fonts, e.g. v.

For an n ×m matrix A, let J = {1, . . . , n} be the set of columns of the matrix.
Let J ′ ⊆ J then AJ′ indicates the |J ′| × m submatrix of A restricted to the set of
columns J ′. Similarly, xJ′ indicates a restriction of the vector x ∈ Rn to a |J ′|-vector.

2. First Price Set System Auction Problem. In the first price set system

auction each agent bids her true cost and the customer selects a feasible set with min-
imum total cost. Specifically: given an m×n matrix A, an m vector b, a nonnegative
n vector c, and a positive integer k, the goal is to find k mutually exclusive subsets
J1, . . . , Jk of {1, . . . , n} whose total cost is minimized. That is:

min

k
∑

i=1

∑

j∈Ji

cj(2.1)

subject to
∑

j∈Ji

Aj = b, i = 1, . . . , k.
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We assume throughout the paper that the matrix (A,b) is totally unimodular
and that b 6= 0. We show below that under these assumptions, it is possible to present
problem (2.1) as the following linear program:

P(k) : φ(k) = min cx
subject to Ax = kb, 0 ≤ x ≤ 1,

where k is a positive integer, c is a row vector, b,x are column vectors, (A,b) is
totally unimodular, and b 6= 0.

The k-flow set auction problem, which is discussed in detail in [KSM10] and
[CEGP10], is a special case of P(k). Specifically, given a directed graph G with an
origin node s, a sink node t, and a capacity 1 for each edge, we can set A as the
node-edge incidence matrix of G and b as a vector of zeros with the exception of 1
in the row corresponding to s and −1 in the row corresponding to t. The resulting
matrix, (A,b), is totally unimodular.

The total unimodularity of A guarantees that an integer (and thus a binary)
optimal solution to P(k) exists whenever b is an integer vector and the problem is
feasible. The decomposition of this solution to k binary feasible solutions to P(1), as
required by (2.1), is possible due to the following proposition, which is a variant of
the integral decomposition property theorem of Baum and Trotter [BT78].

Proposition 2.1. Let x̄ be a binary feasible solution to P(k). Then, there exist

k binary feasible solutions x̄1, . . . , x̄k to P(1) such that x̄ =
∑k

i=1 x̄
i.

Proof. The proof follows by induction. The case k = 1 is trivial. Suppose the
proposition is true for k− 1 ≥ 2. Let J = {j | x̄j = 1}. Since 1

k
x̄ is a feasible solution

to P(1) and since A is totally unimodular, there exists a binary vector xk such that
AJx

k
J = b. Let x̂ = x̄− xk. Then,

Ax̂ = A(x̄ − xk) = kb− b = (k − 1)b, 0 ≤ x̂ ≤ 1, x̂ is binary.

By the induction assumption, there exist k− 1 binary vectors x̂i, i = 1, . . . , k− 1
such that x̂ =

∑k

i=1 x̂
i and for each i, x̂i is a feasible solution to P(1). Letting x̄i = x̂i

for i = 1, . . . , k − 1, and x̄k = xk completes the proof.

It will be useful to consider P(λ) for real nonnegative parameter value λ. In this
case, we can present the problem as a parametric linear program as follows:

P(λ) : φ(λ) = min cx
subject to Ax = 0+ λb, 0 ≤ x ≤ 1.

(2.2)

It is well known that the function φ(λ) is a continuous piecewise linear convex. In
addition, if the problem has an optimal solution for at least one parameter value λ,
there exist break points λ0, λ1, . . . , λℓ and hi, gi real numbers i = 1, . . . , ℓ, such that,

P(λ) is feasible for λ ∈ [λ0, λℓ],(2.3)

φ(λ) = hi + giλ for λi−1 ≤ λ ≤ λi, i = 1, . . . , ℓ.(2.4)

And, since the matrix (A,b) is totally unimodular,

all the break points λi are integers.(2.5)



4 I. Adler and D. S. Hochbaum

We assume, by introducing lexicographical ordering of the variables if necessary,
that P(k) has a unique optimal solution x∗. We also assume that P(k) is monopoly-

free. That is, for every j = 1, . . . , n, there exists a feasible solution x to P(k) with
xj = 0. This property, as demonstrated in the next proposition, implies that there
exists a feasible solution to P(k + 1).

Proposition 2.2. Suppose that for every j = 1, . . . , n, P(k) has a feasible

solution x̄j with x̄j
j = 0. Then, there exists a feasible solution to P(k + 1).

Proof. Let x̄ = 1
n

∑n

j=1 x̄
j . Then, since x̄ is a strict convex combination of feasible

solutions to P(k), and since x̄j
j = 0 for every j = 1, . . . , n, we have that x̄ is a feasible

solution to P(k) and that 0 ≤ x̄ < 1. Hence, there exists a sufficiently small positive
ǭ such that for λ ∈ [k, (1 + ǭ)k],

(

λ
k

)

x̄ is a feasible solution to P(λ). Recalling that
by (2.5), all the breakpoints λi of φ(λ) in the parametric LP (2.2) are integers, and
considering (2.3), we have that P(k + 1) is feasible.

Throughout the rest of the paper we make frequent use of the optimality conditions

of P(λ) that are stated in the following proposition.

Proposition 2.3. Let x̄ = (x̄J0
, x̄Jf

, x̄J1
), where x̄J0

= 0, 0 < x̄Jf
< 1, and

x̄J1
= 1, be a feasible solution to P(λ). Then, x̄ is optimal if, and only if, there exists

an m-row vector ȳ such that,

ȳAJ0
≤ cJ0

, ȳAJf
= cJf

, ȳAJ1
≥ cJ1

.

In addition, φ(λ) = cx̄ = λȳb+ (cJ1
− ȳAJ1

)1.

Proof. The proof follows directly by setting the dual problem to P(k) and impos-
ing the complementary slackness conditions.

3. Benchmark Problems. We associate two benchmark problems with P(k).
Let x∗ be the unique optimal solution to P(k), and let

J0 = {j | x∗
j = 0}, J1 = {j | x∗

j = 1}.

In both benchmark problems, we consider changing the prices cj to zj while satisfying
the following requirements (where the decision variables form a row n-vector z):

zJ1
≥ cJ1

, zJ0
= cJ0

,(3.1)

zx∗ ≤ zx̄ for every binary feasible solution x̄ to P(k),(3.2)

For every j = 1, . . . , n, there exists a binary feasible solution x̄j to P(k)(3.3)

such that x̄j
j = 0 and zx∗ = zx̄j . .

The two benchmark problems share the same objective function zJ1
x∗
J1
, but differ

by whether to maximize or minimize it (note that since x∗
J1

= 1, we can refer to the
objective function as zJ1

1). In the max benchmark problem, Bmax(k) that was first
introduced in [EGG07], the objective is to maximize the objective function, while
the objective in the min benchmark problem, Bmin(k) that was first introduced in
[KKT05], is to minimize the objective function. We denote the optimal objective
value of the max benchmark problem by µ(k), and the optimal objective value of the
min benchmark problem by ν(k).
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3.1. The Max Benchmark Problem. As was pointed out in [EGG07], and
can easily be verified, any optimal solution to the max benchmark problem satisfies
the requirement stated in (3.3). Therefore, if a separation oracle for condition (3.2)
is provided, the max benchmark problem can be formulated as a linear program.
In [KSM10] and [CEGP10], the max benchmark problem for the special case of k-
flow is analyzed by using elaborate network theory results. In contrast, by considering
Proposition 2.3, we present an explicit LP formulation of the max benchmark problem
for the more general case as presented in (2.1). We then proceed, by using standard LP
theory, to provide simpler proofs that generalize the results in [KSM10] and [CEGP10].

Applying directly the optimality conditions of Proposition 2.3, and considering
requirements (3.1) and (3.2), the max benchmark problem can be formulated as the
following linear program:

Bmax(k) : µ(k) = max zJ1
1

subject to yAJ0
≤ cJ0

yAJ1
≥ zJ1

zJ1
≥ cJ1

In [CEGP10], it is proved that for the k-flow problem, µ(k) ≥ k[φ(k+1)− φ(k)].
In the following theorem we prove that this inequality is in fact an equality even in
the more general case of total unimodularity.

Theorem 3.1. µ(k) = k[φ(k + 1)− φ(k)].

Proof. Observing that at optimality, yAJ1
= zJ1

, and that AJ1
1 = kb, Bmax(k)

can be written as:

µ(k) = max
y∈Y(k)

kyb = kβ(k),

where

Y(k) = {y | yAJ0
≤ cJ0

, yAJ1
≥ cJ1

}, and β(k) = max
y∈Y(k)

yb.

Considering P(k) as a parametric LP as in (2.2), noting that Y(k) is the set of all
optimal solutions to the dual of P(k), and applying a well known result about paramet-
ric LP (see e.g. Theorem 8.2 of [M83]), we have that β(k) = gi, where λi−1 ≤ k < λi.
However, since by (2.5) the breakpoints λi are all integers, gi = φ(k+1)−φ(k), which
implies that µ(k) = kβ(k) = k[φ(k + 1)− φ(k)].

The pruned first price set system auction problem associated with P(k) is con-
structed by deleting all the columns which are not used in the optimal solution of
P(k + 1). Specifically, let x̄ be the optimal solution of P(k + 1) (we assume it is
unique), and let J = {j | x̄j = 1}. Then, the pruned first price set system auction
problem is defined as:

P̃(k) : φ̃(k) = min c̃x̃

subject to Ãx̃ = kb, 0 ≤ x̃ ≤ 1

where c̃ = cJ , Ã = AJ , and x̃ is a |J1| column vector.
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We denote by µ̃(k) the optimal objective function of the max benchmark problem
associated with the pruned problem, P̃(k). Since the pattern of the auction’s agents’
behavior is simpler for the pruned problem than it is for the original problem, it is
hoped that the values of the associated µ(k) and µ̃(k) are close.

Indeed, for the k-flow problem, it is proved in [KSM10] that µ(k) ≥ 1
k+1 µ̃(k),

while a stronger lower bound result is proved in [CEGP10] – that µ(k) ≥ µ̃(k). In
the following theorem, we prove for the more general case of total unimodularity, the
stronger lower bound for µ(k) (as in [CEGP10]). We also provide an upper bound for
µ(k) in terms of µ̃(k).

Theorem 3.2. µ̃(k) ≤ µ(k) ≤ (k + 1)µ̃(k).
Proof.
(a) Note that φ(k + 1) = φ̃(k + 1). Secondly, since P̃(k) is a restriction of P(k),

φ(k) ≤ φ̃(k). Thus, by Theorem 3.2,

µ(k) = k[φ(k + 1)− φ(k)] ≥ k[φ(k + 1)− φ̃(k)] = µ̃(k)

This completes the proof of the lower bound.
(b) Let x̄ be a binary optimal solution to P(k + 1). By Proposition 2.1, there

exist binary x̄i, i = 1, . . . , k + 1 such that Ax̄i = b and x̄ =
∑k+1

i=1 x̄i. Let
δ = max1≤i≤k+1 cx̄

i. Then,

µ̃(k) = k[φ(k + 1)− φ̃(k)] ≥ k[φ(k + 1)− (φ(k + 1)− δ)] = kδ.

and

kδ ≥ k
φ(k + 1)

k + 1
≥

k[φ(k + 1)− φ(k)]

k + 1
=

µ(k)

k + 1
.

3.2. The Min Benchmark Problem. Let ν(k) be the optimal value of the min
benchmark problem. Unlike the max benchmark problem, the third requirement of
the min benchmark problem (3.3), is not redundant. Moreover, it is shown in [CK07]
that the min benchmark problem for the special case of k-flow is NP-complete even
for k = 1. However, paper [CEGP10] presents a lower bound for ν(k) (for the k-flow
case). The key to this bound is a theorem, first introduced in [GC10], which is related
to a minimum cost k-flow problem with the property that removing any single edge
from the underlying network does not affect the total minimum cost. In the following
proposition, we present a simpler proof of the same theorem but in our more general
setup.

Proposition 3.3. Suppose that for every j = 1, . . . , n, P(k) has a binary optimal

solution x̂j with x̂j
j = 0. Then, there exist k+1 binary optimal solutions x̄1, . . . , x̄k+1

to P(1) such that
∑k+1

i=1 x̄i is an optimal solution to P(k + 1).

Proof. Let x̂ be a strict convex combination of all the binary optimal solutions
x̂j , j = 1, . . . , n, to P(k). Let

Jf = {j | x̂j > 0}, J0 = {j | x̂ = 0}.

By the assumption of the proposition and the definition of Jf , we have that 0 <

x̂Jf
< 1. Since x̂ is an optimal solution to P(k), and by Proposition 2.3, there exists

ȳ such that

ȳAJ0
≤ cJ0

, ȳAJf
= cJf

.
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Moreover, Proposition 2.3 implies that for nonnegative λ,

xJ0
= 0, 0 ≤ xJf

≤ 1, AJf
xJf

= λb, ⇒ x is optimal for P(λ).(3.4)

Now, consider Pf(λ), the parametric LP (2.2) restricted to Jf . That is,

Pf (λ) : φf (λ) = min cfxf

subject to Afxf = 0+ λb, 0 ≤ xf ≤ 1.
(3.5)

Note that the proposition’s assumption implies that Pf (k) is monopoly-free. That is,
for every j ∈ Jf there exists a binary feasible solution x to Pf (k) with xj = 0. Thus,
applying Proposition 2.2 to Pf (k), we have that there exists a binary feasible solution
x̄Jf

to Pf (k + 1). Now, let x̄ = (x̄J0
, x̄Jf

) where x̄J0
= 0. We define

x̄(λ) =

(

λ

k + 1

)

x̄.

Since x̄(λ) is feasible for P(λ) for λ ∈ [0, k + 1], and by (3.4), we have that x̄(λ)
is optimal for P(λ) for λ ∈ [0, k + 1]. So, for λ ∈ [0, k + 1],

φ(λ) = cx̄(λ) = cJf

(

λ

k + 1

)

x̄Jf
=

(

λ

k + 1

)

cJf
x̄Jf

=

(

λ

k + 1

)

φ(k + 1).

Thus, φ(1) = 1
k+1φ(k + 1), which implies that φ(λ) = λφ(1). Finally, recalling that

x̄ = x̄(k + 1) is a binary optimal solution to P(k + 1), and by Proposition 2.1, there

exist k + 1 binary feasible solutions x̄1, . . . , x̄k+1 to P(1) such that x̄ =
∑k+1

i=1 x̄i.
Thus,

0 = φ(k+1)−(k+1)φ(1) = cx̄−(k+1)φ(1) = c(
k+1
∑

i=1

x̄i)−(k+1)φ(1) =
k+1
∑

i=1

(cx̄i−φ(1))

Noting that cx̄i−φ(1) ≥ 0 for i = 1, . . . , k+1, and
∑k+1

i=1 (cx̄
i−φ(1)) = 0, we conclude

that for i = 1, . . . , k+1, cx̄i = φ(1). Hence, x̄i (i = 1, . . . , k+1) are optimal for P(1).

Based on Proposition 3.3, we conclude this section by proving a lower bound
for ν(k) which is a straightforward generalization of a similar bound established in
[CEGP10] for the k-flow case.

We call a set S = {x1, . . . ,xk+1} a feasible collection for P(k + 1), if for

i = 1, . . . , k + 1, xi is a binary feasible solution to P(1) and
∑k+1

i=1 xi is a feasible
solution to P(k + 1). We define γc(S) = maxxi∈S cxi and Γc = minS∈Ω γc(S), where
Ω denotes the set of all feasible collections S for P(k + 1).

Let z̄ be an optimal solution to the min benchmark problem. We denote by Pz̄(k)
problem P(k) where z̄ replaces c in the objective function, and by φz̄(k) the optimal
objective function value of Pz̄(k).

Theorem 3.4. ν(k) ≥ kΓc.

Proof. Let x∗ be the unique binary optimal solution to P(k). Then, by require-
ment (3.2) of the min benchmark problem, we have that x∗ is a binary optimal solution
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to Pz̄(k). However, requirement (3.3) of the min benchmark problem satisfies the as-
sumption of Proposition 3.3, with respect to Pz̄(k). Thus, there exist k + 1 binary

optimal solutions x̄1, . . . , x̄k+1 to Pz̄(1) such that
∑k+1

i=1 x̄i is an optimal solution to
Pz̄(k + 1). It also follows, by the convexity of φ(λ), that kφz̄(k) = kφz̄(1). Thus,
noting that for i = 1, . . . , k+1, zxi = φz(1), and that (3.1) implies that for all S ∈ Ω,
γz(S) ≥ γc(S), we have

ν(k) = z̄x∗ = φz(k) = kφz̄(1) = kγz(x̄
1, . . . , x̄k+1) ≥ kγc(x̄

1, . . . , x̄k+1) ≥ kΓc.
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