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Foreword

This paper is one of a series by distinguished academic economists
and operations analysts published by the Program Analysis Division of
IDA. The series developed from a seminar program on contemporary
economics. In each case the contributors presented either a survey of
the present ''state of the art' in their areas of interest or addressed
more specialized problems of direct interest to economists. We are
publishing this series to share these seminar papers with the intellectual

community at large.

Harry Williams
Program Analysis Division
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Dr. Adler is Acting Assistant Professor of Operations Research at
the University of California, Berkeley. Dr. Dantzig is Professor of
Operations Research and Computer Science at Stanford University.

Professor Dantzig presented this paper at IDA on December 2, 1971,

It was published by the Stanford University Department of Operations
Research as Technical Report No, 71-12 in August 1971,
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I

Abstract Polytope -- Definition and Notation

Given a finite set T of symbols, a family P of subsets of T (called

vertices) forms a d-dimensional abstract polytope if the following three
axioms are satisfied:

1. Every vertex of P has cardinality d.
2. Any subset of d-1 symbols of T is either contained in no vertices

of P or in exactly two (called neighbors or adjacent).

3. Given any pair of vertices v, v € P, there exists a sequence
of vertices v = Vgr s v T v such that
(a) Vi v—i+1
® {vN v}Cvi, i=0,...,kK.

are neighbors (i=0, . . . , k-1)

It is convenient to delete from T all symbols that are not used to
define vertices. Hence we denote UP = {Uv|v € p}.

Let u be a subset of UP such that |u| =k, (Iul denotes the cardinality
ofuy. If P = {v s Plv> u| is nonempty we say that P' is the face
of P which is generated by u and denote it by Fp(u) or simply F(u) if the
abstract polytope P is clear. It is not difficult to verify that the family
{v-ulv e Fo() | of subsets obtained by deleting u from each vertex of

such a face is a (d-k) -dimensional abstract polytope. In the sequel we



shall use this property of faces extensively. Whenever we refer to the
abstract polytope associated with a face it is understood that the deletling

of common symbols has been performed. Since FP (u) corresponds to a
(d-k)-dimensional abstract polytope we say that it is a (d-k)-dimensional
face of P. Zero, one and (d-1)-dimensional faces are called, respectively,

vertices, edges, and facets.

A d-dimensional abstract polytope with n facets is called an (n,d)-
abstract polytope. (Note that n = IUPl.) We denote by P(n,d) the class
of all (n,d)-abstract polytopes.

The graph G(P) of an abstract polytope P is the graph whose vertices

and edges correspond one to one to the vertices and edges of P, respec-
tively.

Note that Axiom 3 is satisfied by P if, and only if, the graph of every
face of P is connected. If we augment P by including all subsets of the
vertices of P, then Axioms 1 - 3(a) define a (d-1)-dimensional pseudo-
manifold (with no boundary). Thus an abstract polytope can be made to
correspond to a pseudomanifold with the property that all its faces are also

pseudomanifolds.

II

Relation Between Abstract and Simple Polytopes

Abstract polytopes are (combinatorially) closely related to simple
polytopes. A simple polytope can be expressed as the set of solutions of
a bounded and nondegenerate linear program (see Dantzig, [ 4]). Suppose
the latter consists of m equations in n nonnegative variables whose
coefficient matrix is of rank m. One can associate n symbols with the
index set of the n columns of the coefficient matrix. Then the family of
subsets of symbols which correspond to the nonbasic columns of all the
basic feasible solutions (i.e., vertices) of the linear program forms an
(n,d)-abstract polytope where d =n-m. This is true because any feasible
solution is defined uniquely by the subset of d = n-m nonbasic variables
set to zero (Axiom 1). Given a basic feasible solution, a new basic
solution can be obtained by dropping any one of the d nonbasic variables,
Exactly one of the basic variables can be set equal to zero in its place
(under nondegeneracy and boundedness). This generates a neighboring
vertex (Axiom 2). Given any two vertices v and v, then by restricting
ourselves to the lowest dimensional face common to v and v (i.e., holding
at zero value the subset of nonbasic variables common to the two vertices),
a path of neighboring vertices from v to v can be found (e.g., by using

the simplex method and a suitably chosen objective function) (Axiom 3).



Althbugh the class of abstract polytopes includes (combinatorially)
that of simple polytopes, the converse is not true. Indeed, by a theorem
of Steinitz (see [2 1) the graph of every 3-dimensional simple polytope is
planar. However, the graph of the 3-dimensional abstract polytope
displayed in Figure 2 (on pagel4) is easily shown to be nonplanar. Hence
no simple polytope can have the graph structure of this particular abstract

polytope. (See also the remark at the end of Section V).

I11

Paths and Diameters

Let P be an abstract polytope and let v, v € P, A path of length
k from v to v in P is a sequence of vertices v = Vor vt Ve T v such
that T Vit are neighbors (i =0, . . . , k-1). (Note that vertices
of the path are not required to be in FP(vﬂ v).) The distance pP(v, v)
between v and v in P is the length of the shortest path joining v and v.
The diameter 6 (P) or & is the smallest integer k such that any two
vertices of P can be joined by a path of length less than or equal to k:

&P) = Max pP(v, v) for v, v € P, We d¢note by Aa (n,d) the maximum of

6(P) over all (n,d)-abstract polytopes. This corresponds to Klee and
Walkup's Ab (n,d) for ordinary simple polytopes [1]. In general, of
course, Aa (n,d)> Ab (n,d).

Our main objective is to establish values and bounds for Aa(n,d).
We shall show in particular that the analog of the unsolved d-step (or
Hirsch) conjecture, i.e., that Aa(n,d) < n-d holds for n-d < 5, thus
paralleling results of Klee and Walkup (1] for ordinary polytopes. Our
arguments, however, are based on fewer axioms and imply theirs as a

special case (See Section V1.)

[#3]




Iv

Some Preliminary Results

We shall make frequent use of the following theorem:

Theorem 1. (Adler, Dantzig, Murty [ 3]). Given an abstract polytope P,
if two vertices v, v in P do not have a symbol (say A) in common then
there exists an "A-avoiding path' joining them; i.e., there exists a path
from v to v such that no vertex along the path contains A.

The next theorem is the analog of a result of Klee and Walkup in

(1. The proof here is similar,

Theorem 2. Fork=0,1,2, ...
@ 4,0,d <8 (avk, d+k)
@) 8, (,d) < 8 (n+k, d)
(iii) Aa (n,d) f_Aa(n+2k, d+k) - k; Aa(Zd»d)Zd
(iv) Aa 2d,d) = Aa (2d+k, d+k).

Proof, We shall prove (i)-(iii) for k = 1; the extension to k> 1 is trivial,
Let P be an (n,d)-abstract polytope such that 6 (P) = Aa(n, d).
(i) Let A e UPand let A' ¢ UP be a new symbol, define P' as an
abstract polytope identical with P except the symbol A' replaces A.
Define'i) as a new abstract polytope with vertices vU A'and v'U A for all

ve€ Pandallv'e P',



v, = {1....,d};v1={1,...,d-1,it;v2={1,...,d—2,1,§};
v = {1,...,5}and61={1,i,...,8—-—1}.

Let us define P', P", W, Z and I_Ji, i=2,...,d)asinthe
preceding Lemma. Since we assume that d> 6, we have, by the Lemma,

U,|>2 Letv, v €l
G4 2 Vor %2 € Ugr

- l‘ /

If IZIZ 2, then (considering the two vertices in Z and vy ) (iv) holds
by Theorem 8. If IZI =1, then Z= {;1} and necessarily ;2, w—lz' have the
form:

v,={L,4,1,... ,d-1}- {i

0};\_" ={1,d, i,...,—:l-i‘{}o}

<d-1 and i #]0

for some i 3<

o Jgt 350 3pS
Let W' = F(1) NN(v_). Note [W'| =d-1. Every v e W' contains
0’ ]0, d}, then

|v'1 ﬂv'2 n v'2| = 3 so that Theorem 4 (iv) follows from Theorem 6, If

).
0
{1,d} except v,. Ifanyv' e{W'-v } contains i ¢ {i

on the contrary, allve {W' - vl} contain either d or i or }0, then there

'y 3 0 N
exists a pair v}, v € {wr - v1| both of which contain {1, d} or {1, 10}
or {1, jo} because IW' - v1| =d-2> 4 for d > 6. We may now apply the

corollary of Theorem 8 (Corollary 2). D

Theorem 9.
(i) Aa(2d+1, d) < Aa (ed, d-1) +1, d>2,

) 4,(2d, )< 8 (2d-k, d-k) +K, k=(1,2,3,4), d-k> 2.

Proof,
(i) Let P €P(2d+1, d) such that &P =Aa(2d+1, d), and let the minimal

path joining L to Yo in P have length Aa (2d+1, d). By Theorem 3 we can

agsume v, n v0 = §f and that there exists vy € N(vo) such that |v nv |
Otherwxse allve N(v ) would be neighbors and there would be no path

from v to vo . The result follows since 6 F(v n vo) ]iAa @2d, d-1).

(iiy Follows immediately from Theorem 4. D

Relations for Simple Polytopes. Note that the various arguments present

apply if the phrase nsimple polytope" is substituted for abstract polytope
wherever it occurs and the term “a(n,d) is replaced by Ab(n,d) (the maxi-
mum diameter of ordinary polytopes over all d-dimensional polytopes

with n facets). Therefore, the various theorems and corollaries are alst

valid after the replacement of these terms.



VI

Maximum Diameters of Abstract Polytopes
and the Hirsch Conjecture

Corresponding to the Hirsch conjecture of simple polytopes is the

conjecture for abstract polytopes that
Aa(n,d)_<_n—d (d> 1, n>d+l).

Theorem 10 below is the analog of the results of Klee and Walkup
[ 1] for abstract polytopes (except for Ab (n,3) =[2n/3] - 1forn> 9)
and is based mainly on Theorem 4.

Theorem 10, The values of Aa. (n,d) for n-d < 5, and all d are given in
the following table. In addition, Aa 0,2) =[n/21.
Table 1

VALUES OF 5 _(n,d)

n-d
1 2 |3 |4 |5
d

1 1
2 w2 2 3 3 . .Aa(n,2)=[n/2]
3 v 3 |3 |4
4 " 1"t " 4 5

d > 5 " " 1" " 5

(The quotation mark indicates that each column is constant from the

main diagonal downwards.) 27



Proof. Let P¢ P(n,d) and 6P = 4, @,d). By Theorem 3 we can further
assume for n> 2d that there exist v, v. ¢ P such that v 50 =¢ and

- 0, 0
P Vg vy =4,(n, d).

(a) 2d >n: By Theorem 2 (iv) each column of Table 1 is constant from
the main diagonal downwards.

(b) d =2, n>4: Since P is a 2-dimensional abstract polytope, the
number of vertices of P is equal to the number of its edges; therefore,
the graph of P forms a simple cycle with n vertices. Hence Aa( n,d) =
[n/2],

(c) n=2d, d< 5. Applying Theorem 4, 8, (2d, d) =p (v, 60) =d

(d d=3,n=17 LetUP -‘{v Uv,} =A. Thenby Theorem 1 there

of
exists an A-avoiding path between v 0 and v This path intersects

N2 (vo), say, at Vo Since every vertex in Nz(vo) contains two symbols
of *dP Yo } v is necessarily adjacent to Vor Hence A (1,3 < 3.

Since Aa (7,3 ZAa (6,2) = 3, by Theorem 2, we obtain Aa (7,3) =

(e)d=3 n=8: LetUP= {1,2,3,4,5,6,7,8}, Vo =11,2,3}, and
= {4,5,6} where 4 a (8:3) = p(vo.vo).
polytope belonging to P (8,3) with diameter 6 = 4. Therefore 5(P) >4.

Figure 2 is an abstract

Assume 0(P) > 4. Then every vertex contains either {7} or {8}; other-
wise a vertex in N (vo) and \70 (or in N(;O) and vo) would both contain a
symbol in common, say {5} , and we would have 4, (8,3)=6@)< 1+

8 (FG))<1+ a, (7,2) = 4. Thus we can assume without loss of generality

Ny = {1,2,7; {1,3,7}; {2,3,8} and N(GO) =1{4,5,7 } ; {4,6,8}; and either

{5,6, 7} or |{5,6,8}. Consider now the cycle F(7) which can contain at
most seven vertices. In the first case the shorter leg of the cycle joining

N(vo) to N(\?o) provides a path of length 2. In the second case neither

28

{4 6 7} nor {5 6,7 | can appear in the cycle so that it has at most s8ix
» t Bt ]
vertices and it too provides a path of length 2. Thus 4 < Aa(8, 3 =
- <4l
o Vo=t
() d=4, n=9: Klee and Walkup in (1] exhibita P ¢ P(9,4) with8P =5

(H\4

Thus by Theorem 9 and (e) above, 5 gAa(9,4) <_Aa(8,3) +1=5,

O
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