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A POLYNOMIAL-TIME PRIMAL-DUAL AFFINE SCALING 
ALGORITHM FOR LINEAR AND CONVEX QUADRATIC 
PROGRAMMING AND ITS POWER SERIES EXTENSION*t 

RENATO D. C. MONTEIRO,* ILAN ADLER? AND 

MAURICIO G. C. RESENDE** 

We describe an algorithm for linear and convex quadratic programming problems that uses 
power series approximation of the weighted barrier path that passes through the current iterate 
in order to find the next iterate. If r > 1 is the order of approximation used, we show that our 
algorithm has time complexity O(n t(+l/r)L(l+l/r)) iterations and O(n3 + n2r) arithmetic 
operations per iteration, where n is the dimension of the problem and L is the size of the input 
data. When r = 1, we show that the algorithm can be interpreted as an affine scaling algorithm 
in the primal-dual setup. 

1. Introduction. After the presentation of the new polynomial-time algorithm for 
linear programming by Karmarkar in his landmark paper [15], several so-called interior 
point algorithms for linear and convex quadratic programming have been proposed. 
These algorithms can be classified into three main groups: 

(a) Projective algorithms, e.g. [3], [4], [8], [14], [15], [29] and [34]. 
(b) Affine scaling algorithms, originally proposed by Dikin [9]. See also [1], [5], [10] 

and [33]. 
(c) Path following algorithms, e.g. [13], [18], [19], [24], [25], [26], [28] and [32]. 

The algorithms of class (a) are known to have polynomial-time complexity requiring 
O(nL) iterations. However, these methods appear not to perform well in practice [30]. 
In contrast, the algorithms of group (b), while not known to have polynomial-time 
complexity, have exhibited good behavior on real world linear programs [1], [20], [23], 
[31]. Most path following algorithms of group (c) have been shown to require O(/n L) 
iterations. These algorithms use Newton's method to trace the path of minimizers for 
the logarithmic barrier family of problems, the so-called central path. The logarithmic 
barrier function approach is usually attributed to Frisch [12] and is formally studied in 
Fiacco and McCormick [11] in the context of nonlinear optimization. Continuous 
trajectories for interior point methods were proposed by Karmarkar [16] and are 
extensively studied in Bayer and Lagarias [6] [7], Megiddo [21] and Megiddo and Shub 
[22]. Megiddo [21] related the central path to the classical barrier path in the 
framework of the primal-dual complementarity relationship. Kojima, Mizuno and 
Yoshise [19] used this framework to describe a primal-dual interior point algorithm 
that traces the central trajectory and has a worst time complexity of O(nL) iterations. 
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Monteiro and Adler [25] present a path following primal-dual algorithm that requires 
O(Vn L) iterations. 

This paper describes a modification of the algorithm of Monteiro and Adler [25] and 
shows that the resulting algorithm can be interpreted as an affine scaling algorithm in 
the primal-dual setting. We also show polynomial-time convergence for the primal-dual 
affine scaling algorithm by using a readily available starting primal-dual solution lying 
on the central path and a suitable fixed step size. Furthermore, we show finite global 
convergence (not necessarily polynomial) for any starting primal-dual solution. In [21] 
it is shown that there exists a path of minimizers for the weighted barrier family of 
problems, that passes through any given primal-dual interior point. The direction 
generated by our primal-dual affine scaling algorithm is precisely the tangent vector to 
the weighted barrier path at the current iterate. Hence, the infinitesimal trajectory 
determined by the current iterate is the weighted barrier path specified by this iterate. 

We also present an algorithm based on power series approximations of the weighted 
barrier path that passes through the current iterate. We show that the complexity of the 
number of iterations is given by O(n (l +/r)L(1+l/r)) and that the work per iteration is 
O(n3 + n2r) arithmetic operations, where r is the order of the power series approxi- 
mation used and L is the size of the problem. Hence, as r - oo, the number of 
iterations required approaches O(/nHL). We develop this algorithm in the context of 
convex quadratic programming because it provides a more general setting and no 
additional complication arises in doing so. We should mention that the idea of using 
higher order approximation by truncating power series is suggested in [17] and also is 
present in [1], [7] and [21]. However, no convergence analysis is discussed there. 

The importance of starting the algorithm at a point close to the central path is also 
analyzed. More specifically, the complexity of the number of iterations is given as a 
function of the "distance" of the starting point to the central path. It should be noted 
that Megiddo and Shub [22] have analyzed how the starting point affects the behavior 
of the continuous trajectory for the projective and affine scaling algorithms. 

This paper is organized as follows. In ?2 we motivate the first order approximation 
algorithm, by showing its relationship to the algorithm of Monteiro and Adler. We also 
interpret this first order approximation algorithm as an affine scaling algorithm in the 
primal-dual setup. In ?3 we present polynomial-time complexity results for the 
primal-dual affine scaling algorithm (first order power series) in the context of linear 
programming and under the assumption that the starting point lies on the central path. 
In ?4, we analyze the higher order approximation algorithm in the more general 
context of convex quadratic programming. We also analyze how the choice for the 
starting point affects the complexity of the number of iterations. Concluding remarks 
are made in ?5. 

2. Motivation. In this section we provide some motivation for the first order 
version of the algorithm that will be described in this paper. We concentrate our 
discussion on the relationship between this algorithm and the algorithm of Monteiro 
and Adler [25]. We also give an interpretation of the first order algorithm as an affine 
scaling algorithm in the primal-dual setup. 

Throughout this paper we adopt the notation used in [19] and [25]. If the lower case 
x = (Xl,..., x,) is an n-vector, then the corresponding upper case X denotes the 
diagonal matrix diag(x) = diag(xl,..., x,). We denote the jth component of an 
n-vector x by xj, for j = 1,..., n. A point (x, y, z) E .n X Mm X Mn will be denoted 
by the lower case w. The logarithm of a real number a > 0 on the natural base and on 
base 2 will be denoted by In a and log a respectively. We denote the 2-norm and the 
oo-norm in !" by 1I II and 1I IIo respectively. Finally, for w = (x, y, z) E Mn x ~m 
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X "n, we denote by f(w) = (fi(w),..., f,(w))T E n", the n-vector defined by 

(1) fi(w) = xizi, i = 1,..., n. 

Consider the pair of the standard form linear program 

(2) (P) minimize CTX 

(3) subject to: Ax = b, 

(4) x > 0, 

and its dual 

(5) (D) maximize bTy 

(6) subject to: ATy + z = c, 

(7) z > 0, 

where A is an m x n matrix, x, c and z are n-vectors and b and y are m-vectors. We 
assume that the entries of A, b and c are integer. 

We define the sets of interior feasible solutions of problems (P) and (D) as 

(8) S = {x '; Ax = b,x > 0}, 

(9) T = (y, z) m X n; ATy + z = c, z > 0} 

respectively, and let 

(10) W= (x, y,z);xeS,(y,z) T}. 

We define the duality gap at a point w = (x, y, z) E W as cTx - bTy. One can easily 
verify that for any w E W, cTx - bTy = xTz. In view of this relation, we refer to the 
duality gap as the quantity xTz instead of the usual cTx - bTy. We make the following 
assumptions regarding (P) and (D): 

Assumption 2.1. (a) S # 0. 
(b) T 0. 
(c) rank(A) = m. 
Before we describe the primal-dual affine scaling algorithm, we briefly review the 

concept of solution pathways for the weighted logarithmic barrier function family of 
problems associated with problem (P). For a comprehensive discussion of this subject, 
see [11] and [21]. 

The weighted barrier function method works on a parametrized family of problems 
penalized by the weighted barrier function as follows. The weighted barrier function 
problem with parameter j > 0 and weights sj > 0, j = 1,..., n is: 

n 

(11) (P,,) minimize cTx - L E sj In Xj 
j=1 

(12) subject to: Ax = b, 
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Conditions (a)-(b) of Assumption 2.1 imply that the set of optimal solutions of (P) is 
nonempty and bounded [25]. This fact implies that (P,) has a unique global optimal 
solution x = XS(/) that is characterized by the following Karush-Kuhn-Tucker sta- 

tionary condition (cf. [11], [21]): 

(14) ZXs - Ips = 0, 

(15) Ax - b = 0, x > 0, 

(16) ATy + z - c = 0, 

where s = (s1,..., s) denotes the vector of weights, y - yS(/) E Rm and z - zS() 
E n. Furthermore, as --> 0+, the solution xS(/M) for (14)-(16) converges to an 

optimal solution of (P) and the corresponding pair (yS(/M), zS(/,)) E T converges to an 

optimal solution of (D) [11], [21]. We refer to the path ws: --> wS(ti) 
(xs(l), ys(A), zS(,i)) as the path of solutions of problem (P) with weight s = 

(S1 .., Sn). 

We define the central path w(/M) as the path of solutions ws(,L) of problem (P) with 
s = (1,..., 1) and let F denote the set of points traced by the central path, that is, 

(17) r = {w = (x, y, z) E W; for some L > 0, xz,i = I, i = 1,..., n}. 

For convenience, we also refer to the set r as the central path. 
Monteiro and Adler [25] present an interior path following primal-dual algorithm 

which requires at most O(v'nL) iterations. This primal-dual algorithm assumes given 
constants 6 and 8 satisfying 

(18) 0 < 

(19) 0 < < n, 

(20) 82 
+ 82 

( 1 8) 2(1 - 0) - 

(e.g. 0 = 8 = 0.35) and an initial feasible interior solution w? E W satisfying the 

following criterion of closeness to the central path F: 

(21) IIf(w?) - toell < u0?, 

where Ix? = (xo)Tz?/n. Also assumed given is a positive tolerance E for the duality gap. 
The algorithm iterates until the duality gap (xk)Tzk falls below the tolerance E. 

For w e W and ML > 0, we denote the feasible direction Aw - (Ax, Ay, Az) ob- 
tained by solving the system of linear equations 

(22) ZAx + ZAz = XZe - uie, 

(23) A Ax = 0, 

(24) ATAy + Az = 0, 

by Aw(w, a). The direction Aw(w, jt) is the Newton direction associated with system 
(14)-(16) for the parameter ,/ fixed and the weights s. = 1, j = 1,..., n [19], [25]. 
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System (22)-(24) has the following solution: 

Ax = [Z-1 - Z-XAT(AZ-1XAT)'LAZ-] ( XZe - !e) 

Ay= -[(A XAT) AZ-1XA AZ- XZe - ie) 

Az = [AT(AZ-1XAT)-AZ-L](XZe - e) 

The algorithm is given next. 
Algorithm 2.1. The Algorithm of Monteiro and Adler. 

procedure PrimalDual (A, b, c, E, w?, 8) 
1. Set k := 0 and tL? = (xO)TzO/n; 
2. do(xk)Tzk > I 

3. /k+1 /k (1 
- 

8//); 
4. Aw" : w(w, /); 
5. wk+1 := w - AWk; 
6. Set k = k+ 1; 
7. od; 
end PrimalDual; 

Note that in line 5, no step size is used to define the next iterate. Instead, we can view 
ut as playing the role of step size. The following theorem, which is proved in [25], leads 
to polynomial-time complexity of the above algorithm. 

THEOREM 2.1. Let 0 and 8 be constants satisfying (18)-(20). Assume that w= 
(x, y, z) E W satisfies 

(25) IIf(w) - t|ell < I, 

where xT = xTz/n. Let f > 0 be defined as ,i = ,j(1 - 6/ /n). Consider the point 
w = (, y, z) E "n x m X n given by = w - Aw, where Aw - Aw(w, i) satis- 
fies (22)-(24). Then we have 

(a) IIf(w) - Pell e< O, 
(b) w W, 
(c) x z = nH. 

The approach of the algorithm of this paper is to compute the search direction Aw 
by solving system (22)-(24) with t = 0, and introduce a step size a so that the new 
iterate w is found from the current iterate w as follows: 

(26) w = w- aAw. 

More specifically, the direction Aw = (Ax, Ay, Az) is determined by the following 
system of linear equations 

(27) ZAx + XAz = XZe, 

(28) A Ax = 0, 

ATAy + Az = O, 
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which results in the following direction: 

(30) Ax = [z-1 
- Z-XAT(AZ-lXAT) 'AZ-l](XZe) 

[z-1 - Z-lXAT(AZ-lXAT) lAZ-1 Xc, 

(31) Ay= -[(AZ-1XAT) AZ-1](XZe) 

= -(AZ-1XAT) b, 

(32) Az = [AT(AZ-lXAT)-'AZ-1](XZe) 

=AT(AZ-1XAT)-lb, 

where the second equalities in (30)-(32) follow from the fact that z = c - ATy and 
Ax = b. Note that the computation of Ay and Az is a byproduct of the computation 
of Ax. We denote the solution Aw of system (27)-(29) by Aw(w). 

We show that, by appropriately choosing the step size a > 0 and an initial starting 
point w? E W (via artificial variables), the algorithm outlined above has polynomial- 
time complexity. A detailed description of the algorithm is presented in ?3 together 
with a proof of polynomial-time complexity. 

We now give an interpretation of this algorithm as an affine scaling algorithm in 
the primal-dual setting. Before, we need to describe a general framework for affine 

scaling algorithms. An affine scaling algorithm assumes a feasible interior point x? E S 
is given as a starting point. Given the kth iterate x = xk E S, the algorithm computes 
a search direction Ax Axk as follows. Let D - Dk be a diagonal matrix with strictly 
positive diagonal entries. Consider the linear scaling transformation D': '" -> 7", 
where 'D(x) = D-lx. In the transformed space problem (P) becomes 

(33) (Pi)) minimize (Dc) T 

(34) subject to: ADv = b, 

(35) u > 0. 

The search direction d in the transformed space is obtained by projecting the gradient 
vector Dc orthogonally onto the linear subspace v: ADv = 0} to obtain a feasible 
direction that yields the maximum rate of variation in the transformed objective 
function. Specifically, this direction is given by 

(36) d= [I - DAT(AD2AT) AD]Dc. 

Hence, in the original space the direction Ax is given by 

(37) Ax = I,D'(d) 

= D[I- DAT(AD2AT) IAD]Dc. 
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Since (P) is posed in minimization form the next iterate x - xk+l is given by 

(39) = x-aAx, 

where a > 0 is selected so as to guarantee that the iterate x > 0. 
When the scaling matrix D - X, (38) is the direction generated by the primal affine 

scaling algorithm [5], [10], [33]. Note that in this case, the primal affine transformation 
'x maps the current iterate x in the original space into the vector of all ones in the 
transformed space. Commonly, for the primal affine scaling algorithm, the step size a 
is computed by performing a ratio test and multiplying the step size resulting from the 
ratio test by a fixed positive constant less than 1 (see for example [5], [10], [30] and [33] 
for details). 

The primal-dual algorithm can also be viewed as a special case of this general 
framework if we assume that besides the current primal iterate x E S, we also have a 
current dual iterate (y, z) e T in the background. In this case, if we let the scaling 
matrix D - (Z-1X)1/2, then (38) is exactly the direction given by (30). Note that now 
the current iterate x in the original space is mapped, under the affine transformation 
"D, into the following vector in the transformed space 

(40) (XZ)I/2e = ( xl, ,..., /Xz ). 

The above framework was described for problems posed in standard form. A similar 
description can be done for problems posed in format of the dual problem (D). In this 
case, the affine transformation 'D is used to scale the slack vector z. When the scaling 
matrix D - Z-1, we obtain the dual affine algorithm [1]. More specifically, if (y, z) E T 
is the current iterate, the direction computed by the dual affine scaling algorithm is 
given by 

(41) Ay = -(AD2AT)-lb, 

(42) Az = AT(AD2AT)-~b, 

where D - Z-1 and the next iterate (p, z) E T is found by setting y = y - a Ay and 
z = z - a Az. The step size a is computed in a way similar to the one in the primal 
affine scaling algorithm and guarantees that z > 0. The dual affine scaling algorithm 
has been shown to perform well in practice [1], [2], [20], [23]. In this dual framework, if 
the scaling matrix D (Z-1X)1/2, then (41) and (42) are identical to (31) and (32) 
respectively. Thus, in this case, we again obtain the primal-dual affine scaling algo- 
rithm. 

Global, though not polynomial, convergence proofs exist for the affine scaling 
algorithms under the assumption of nondegeneracy [5], [10], [33]. It is conjectured, 
however, that both the primal and dual affine algorithms have worst case time 
complexity that are not polynomial. By appropriately choosing a starting primal-dual 
solution and a suitable fixed step size, we show in this paper that in the primal-dual 
setting, the affine scaling algorithm has polynomial-time complexity. 

3. The algorithm and convergence result. In this section, we complete the descrip- 
tion of the primal-dual affine scaling algorithm that was briefly outlined in ?2. 
Polynomial-time complexity for this algorithm is established by selecting a suitable 
starting point and an appropriate step size. We make one further assumption regarding 
problems (P) and (D). 
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Assumption 3.1. An initial point w? = (x0, y0, z0) E W is given such that the 
following condition holds: 

(43) xOzo = 0 i= 1,2,..., n, 

where 0 < AO = 20(L) 
Relation (43) is equivalent to requiring that w? = w(/?) where w(jt) is the central 

path. Observe that Assumption 3.1 implies (a) and (b) of Assumption 2.1. Given a 
linear program in standard form, an associated augmented linear program in standard 
form can be constructed satisfying Assumptions 2.1 and 3.1 and whose solution yields 
a solution for the original problem, if such exists. Indeed, in [25], it is shown that the 
augmented problem can be constructed in such a way that a initial point w? lying in 
the central path is readily available and that the size of the original problem and that 
of the augmented problem are of the same order. The point w? is used as the 
algorithm's initial iterate. 

The algorithm generates a sequence of points wk E W, (k = 1, 2,...) starting from 
w? as follows. Given wk E W, the search direction Aw(wk) is computed according to 
(30)-(32) and wk+1 is found by setting 

(44) wk+l = wk - ak Aw(wk) 

where ak is the step size at the k th iteration. For the purpose of this paper, which is 
limited to a theoretical analysis, we choose a constant step size ak = a (for k = 

0, 1, 2,...), to be described next. Let E be a given tolerance for the duality gap, i.e. the 
algorithm terminates when the duality gap (xk)Tzk is no longer greater than E. The step 
size is chosen to depend on the parameter ?0, the dimension n and the tolerance c as 
follows: 

(45) a- 
n (nE-L)l 

where [xl denotes the smallest integer greater than or equal to x. We also assume that 
a < 1/2, which can be insured by the choice of the tolerance c. Note that the larger 
E-1, ?0 and n are, the smaller the step size a is. We are now ready to describe the 
algorithm, which is presented below. 

Algorithm 3.1. The Primal-Dual Affine Scaling Algorithm. 

procedure PrimalDualAffine (A, b, c, E, w?) 
1. Set k := 0; 
2. do(xk)Tzk > c 
3. Compute Aw(wA ) according to (30)-(32); 
4. Set wA+1 := wk - a Aw(wk) where a is a constant given by (45); 
5. Set k := k + 1; 
6. od; 
end PrimalDualAffine; 

Algorithm 3.1 is given as input the data A, b, c, a tolerance c > 0 for the duality gap 
stopping criterion and the initial iterate w? as the one specified in Assumption 3.1. 

The following theorem, whose proof we defer to later in this section, describes the 
behavior of one iteration of Algorithm 3.1 given that a general step size a is taken. 

THEOREM 3.2. Let w = (x, y, z) E W be given such that 

lif(w) - Iello = max Ixizi - IlI < O9u 
1 < i < n 
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where t - xTz/n > 0 and 0 < 0 < 1. Consider the point w = (x, 9, ) defined as 
w = w - a Aw, where Aw - Aw(w) and a E (0,1). Let i - (1 - a)l, and 

n o2 
(47) wAna2 (47) 6=- 

0 + 2(1 - a) 

Then we have: 
(a) Ilf(w) - ,Iello < Oi, 
(b) If 8 < 1 then i E W, 
(c) = xT2/n. 

Theorem 3.2 parallels Theorem 2.1 closely. In spite of the fact that Theorem 3.2 was 
formulated in terms of the oo-term, as compared to the 2-norm formulation of 
Theorem 2.1, we should point out that Theorem 3.2 also holds for the 2-norm as will 
become clear from its proof. The reason we state Theorem 3.2 in terms of the oo-norm 
is discussed in the next section where we prove convergence (not necessarily polyno- 
mial) of algorithm 3.1 for any given starting point w? E W. Polynomial convergence 
will only be guaranteed in the case that the initial starting point is in some sense close 
to the central path. In that context, the oo-norm will play an important role. 

We can view f(w) as a map from n X Am x 9" into .n, mapping w = (x, y, z) 
into the complementarity vector XZe. Under this map, the set W is mapped onto the 
positive orthant, the central path r is mapped onto the diagonal line f(F)= { ie; 
p > 0) and an optimal solution w* = (x*, y*, z*) for the pair of problems (P) and (D) 
is mapped into the zero vector [25]. The image under f of the set of points w E W such 
that IIf(w) - uell < Ot4 with /u = xTz/n is a cone in the positive orthant of gn having 
the diagonal line f(F) as a central axis and the zero vector as an extreme point. The 
central axis forms a common angle with all the extreme rays of the cone and this angle 
is an increasing function of 0. For this reason, we refer to 0 as the opening of the cone. 
Theorem 2.1 states that if we start at a point inside this cone, then all iterates will 
remain within the same cone and will approach the optimal solution f(w*) at a rate 
given by (1 - 8/ fn). This is to be contrasted with Theorem 3.2, where the iterates are 
guaranteed to be in cones with openings that gradually increase from one iteration to 
the other. 

Note that by (c) of Theorem 3.2, we have 

(48) xT = n,i = (1 - a)n= (1 - a)xTz 

that is, the duality gap is reduced by a factor of (1 - a) at each iteration. Therefore, it 
is desirable to choose a as large as possible in order to obtain as large as possible a 
decrease in the duality gap. Once a is specified, the number of iterations necessary to 
reduce the duality gap to a value < E is not greater than 

(49) K = a- ln(n/?E-1)] 

which is immediately implied by the fact that 

(50) (XK)K = (1 a- a)K(XO)TZO = (1 )KnA? < c 

where the second equality is due to (43) and the inequality follows by the choice of K. 
The choice of a should now be made to guarantee feasibility of all iterates wk 
(k = 0,1,..., K) and toward this objective, (b) of Theorem 3.2 will play an important 
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role. The choice of a given by relation (45) becomes clear in the proof of the following 
result. 

COROLLARY 3.3. Let K be as in (49) and consider the first K iterates generated by 
Algorithm 3.1, i.e. the sequence {wk }k=. Let lk (1 - a)kl and k - kna2, for all 
k = 0,1, 2,..., K. Then, for all k = 0, 1,2,..., K we have: 

(a) I|f(wk) - kello, < kk 

(b) wk e W, 

(c) (xk)TZk/n = Lk 

PROOF. From (45), (49) and the definition of 0k, it follows that 

(51) k < Kna2 = 1 

for all k = 0,1,..., K. The proof of (a), (b) and (c) is by induction on k. Obviously 
(a), (b) and (c) hold for k = 0, due to Assumption 3.1. Assume (a), (b) and (c) hold for 
k, where 0 < k < K. Since a < 1/2, it follows that 

n2 
(52) 

k + 2(1 a) 
< Ok + na2 = ek+l 1 

In view of the last relation, we can apply Theorem 3.2 with w - wk, I Ik and 
0 = Ok to conclude that (a), (b) and (c) hold for k + 1. This completes the proof of the 

corollary. * 
We now discuss some consequences of the above corollary. Let L denote the size of 

linear programming problem (P). If we set E = 2-O(L), then by (50), the iterate wK 

generated by Algorithm 3.1, where K is given by (49), satisfies (xK)TzK < - 
= 2-?(L). 

Then, from wK, one can find exact solutions of problems (P) and (D) by solving a 

system of linear equations which involves at most O(n3) arithmetic operations [27]. 
Using this observation, we obtain the main result of this section. 

THEOREM 3.4. Algorithm 3.1 solves the pair of problems (P) and (D) in at most 

0(nL2) iterations, where each iteration involves 0(n3) arithmetic operations. 

PROOF. From (45), (50) and the fact that e = 2-?(L) and j-= 20(L), it follows that 
the algorithm takes at most 

(53) K = n[ln(nE- ?)l2 = O(nL2) 

iterations to find a point wk E W satisfying (xk)Tzk < E = 2-?(L). The work in each 
iteration is dominated by the effort required to compute and invert the matrix 
A(Zk)-lXkAT, namely, O(n3) arithmetic operations. This proves the theorem. * 

We now turn out attention towards proving Theorem 3.2. The proof requires some 
technical lemmas. 

LEMMA 3.5. Let w = (x, y, z) E W be given. Consider the point w = (x, , , ) given 
by w = w - a Aw, where Aw - Aw(w) = (Ax, Ay, Az) and a > O. Then we have: 

(54) xiz, = (1 - a)xi,z + 2 Axi Azi and 

(Ax) AZ = O. 
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PROOF. First, we show (54). We have: 

xizi = (Xi - a Axi)(z - aAzi) 

= xizi - a(Xi AZi + zi Axi) + a2 AXi AZi 

= iz, - aXiZi + a2 Axi Azi 

= (1 - a)xizi + a2 xi Azi 

where the third equality is implied by (27). This completes the proof of (54). To show 
(55) multiply (28) and (29) on the left by (Ay)T and (Ax)', respectively, and combine 
the two resulting expressions. This shows (55) and completes the proof of the lemma. 

The next lemma appears as Lemma 4.7 in [25], where it is proved. 

LEMMA 3.6. Let r, s and t be real n-vectors satisfying r + s = t and rTs > O. Then we 
have: 

(56) max(llril, Ilsil) < ltll, 

(57) IIRSell < 

where R and S denote the diagonal matrices corresponding to the vectors r and s, 
respectively. 

As a consequence of the previous lemma, we have the following result. 

LEMMA 3.7. Let w = (x, y, z) E W be given. Consider the direction Aw Aw(w) 
= (Ax, Ay, Az). Define Af E _n as Af = (AX)(AZ)e, where (AX) and (AZ) are 
the diagonal matrices corresponding to Ax and Az, respectively. Then we have 

xTz 
(58) IlAtI < 2 

PROOF. Let D = (Z-1X)1/2. Multiplying both sides of (27) by (XZ)-1/2, we have 

(59) D-x x + DAz = (XZ)/2e. 

By (55) we have that (D-1Ax)T(DAz) = 0. Hence, we can apply Lemma 3.6 with 
r = D-1Ax, s = DAz and t = (XZ)1/2e resulting in 

I(XZ) l/2el12 
(60) Jj(D-1AX)(DAZ)e\ I< XZ)2 e2 

which is equivalent to (58). This completes the proof of the lemma. ? 
We are now ready to prove Theorem 3.2. 
PROOF (THEOREM 3.2). From (54) and the fact that Ai = (1 - a)/s, it follows that 

Xizi - I = (1 - 
a)(xizi - ) + a2AxiAzi. 
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Since / = xTz/n, it follows from Lemma 3.7 that 

(62) |Axi Azil < IlAfll < 2 

Using relations (46), (61), (62) and the fact that i(1 - a)/j, we obtain 

(63) xiz- i - Il < (1 - a)lxizi - /Il + a2lAxi Az,I 

(1 - a)OL + 2 

n a2 A 

+ 
(1 -a) 

Since the last relation holds for all i = 1,..., n, (a) follows. 
We now show that w E W under the assumption that 

na2 
(64) + 2 -a)< 1 

To show that w E W, it suffices to show that x > 0 and z > 0. Assume by contradic- 
tion that x,i < 0 or zi < 0, for some i. Using relations (63) and (64), it follows that 
iz^i > 0. Hence, it must be the case that xi < 0 and zi < 0. This requires that 

a Axi > xi and a Az, > z,, which implies that 

(65) a2 Axi Azi > x,z, > xizi > (1 - 0)y. 

This last inequality and (62) imply that 

(66) n2 > (1 - ) 

which contradicts the fact that 

na2 na2 
(67) 80 2 + ( <a ) <1. 

This shows (b). Summing (54) over all i = 1,2,..., n and noting (55), we obtain (c). 
This completes the proof of Theorem 3.2. ? 

4. Primal-dual power series algorithm. The algorithm of ?3 can be viewed as 
generating points based on a first order approximation of the weighted logarithmic 
barrier path of solutions determined by the current iterate. This observation will be 
examined later in more detail. In this section, we present an algorithm based on power 
series approximation of the path of solutions that passes through the current iterate. As 
one should expect, faster convergence is obtained. More interestingly, we show that the 

complexity of the number of iterations depends on the order of approximation, say r, 
and moreover, as r --> o, the number of iterations asymptotically approaches the 

complexity of the number of iterations of the primal-dual path following algorithm 
[25], namely, O(F/nL) iterations. We develop the algorithm in this section in the 
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context of convex quadratic programming problems because it provides a more general 
setting for the algorithm without additional complications. 

We start by briefly extending the concepts introduced in ?2 to convex quadratic 
programming problems. Consider the convex quadratic programming problem as 
follows. Let 

(68) (P) minimize crx + ?xTQx 

(69) subject to: Ax = b, 

(70) x >0, 

where A, b, c and x are as in ?2 and Q is an n x n symmetric positive semidefinite 
matrix. Its associated Lagrangian dual problem is given by 

(71) (D) maximize - xTQx + bTy 

(72) subject to: - Qx + ATy + z = c, 

(73) x > 0, 

where y is an m-vector and z is an n-vector. We define the sets of interior feasible 
solutions of problems (P) and (D) to be 

(74) S = {x E n; Ax = b,x > 0}, 

(75) T= (x, y, z) e gn x Mm x n; - Qx + ATy + z = c, z > 0} 

respectively and W is now defined to be 

(76) W= {(x, y, z); x E S,(x, y, z) e T}. 

The duality gap at a point w E W, which is defined as cTx + xTQx - bTy, can be 
easily shown to be given by xTz. We make the following assumptions regarding 
problems (P) and (D): 

Assumption 4.1. (a) A point w? = (x0, y0, z0) E W is given. 
(b) rank(A) = m. 
The point w? will serve as the initial iterate for the algorithm described below. 

Observe that (a) of Assumption 4.1 is weaker than Assumption 3.1 since we do not 
require w? to lie in the central path. As a result, the upper bound on the number of 
iterations for the algorithm described in this section will be given in terms of some 
measure of distance of w? with respect to the central path and also in terms of the 
duality gap at w?. 

In the context of convex quadratic programming problems, the path of solutions for 
the weighted barrier function family of problems associated with problem (P), where 
the weights are s = (s1,..., Sn), is determined implicitly by the following parametrized 
system of equations: 

(77) xiS(,)ziS(p) = sip, i = 1,...,n, 

(78) AxS(,) = b, 

- Qxs(i) + ATyS(i) + Zs(,) = c. 
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Under Assumption 4.1 and for j > 0 fixed, this system is ensured to have a unique 
solution wS(pt) = (xS(M), yS(j), zS(M)). Furthermore, as t -> 0+, the solution xS(t) E 
S for (77)-(79) converges to an optimal solution of (P) and wS(M)- 
(xS(p), yS()), zS(p)) E W converges to an optimal solution of (D) [11], [21]. With 
these definitions and notations, the central path associated with problems (P) and (D) 
is defined as in ?2. 

Given a point w = (x, y, z) e W and letting si = xizi, i = 1,..., n, it follows that 
ws(1) = w. Therefore, for this particular set of weights, the path of solutions contains 
the point w. The idea of the rth degree truncated power series approach can be 
motivated as follows. In order to obtain an approximation to the point ws(1 - a) for 
a > 0, we consider the rth order Taylor polynomial, r > 1, of the function h: 
a -- wS(1 - a) at a = 0 as follows: 

(80) w(w, a) - k! dak(0) 

(-a)kdkWS 
=w+ k, k! dk (1) 

where for k > 1, dk/dyk is the k th derivative operator and for k = 0, d?/dl? is 
defined as the identity operator, that is do?w/dO?(L) - ws(/), for all j. If the kth 
derivative dkWs/dyk(l), (k = 1,..., r), is known, then one can use wr(w, a) to 
estimate the point ws(1 - a), for a sufficiently small. 

We next show how the kth derivative 

(81) dkwS (1) -d ds d k for k =1..., r (81) dkws for _ k: _r 
( dk (d/k ,d1k1 

can be computed. Taking the derivative of (77)-(79) k times, and setting j = 1, we 
obtain 

(82) (kI )d'xi d(k- 
l)i 

(1) = xi if k , k0 d,1u d -I'V 0 if k >2, 

(83) A d (1) = 0, 

dkX (84) ky dkz 
(84) Q dk (1) + A (1) (1) = 0 

d--- --k ( dl1=0 

To eliminate the binomial coefficients above and simplify the expressions below, let 
A(k)w = [dkw/d tk(l)]/k!, for k = 0, 1,..., r. With this notation relations (82)-(84) 
become 

(85) (l)xi)( 
( 

z) 
i 

if k = 1, 

(86) X Ak0 k G if k> 2, 

(86) A A(k)x = 0, 

- Q A(k)x + ATA(k)y + A(k)z = 0. (87) 
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In terms of the direction A(k)w, 1 < k < r, the right-hand side of (80) becomes 

r r 

(88) wr(w, a) - E (-_)k A(k)W = W + (--)k Ak)w. 
k=O k=l 

Let A(k)X and A(k)Z be the diagonal matrices corresponding to the vectors A(k)x and 
(k)z, respectively. Assume that A(t)w = (A(')x, A(')y, A()z), 0 < I < k have already 

been computed. Then we compute A(k)w = (A(k)x, A(k)y, A(k)) by solving the follow- 

ing system of linear equations, which is exactly system (85)-(87) written in a different 
format. 

XZe if k = 1, 

(89) Z A(k)x + XA(k)z = k-1 
(89) ZAx(k)x + 

X(kz= - (\A()X)(A(k-')Z)e if k > 2, 
l-- 

(90) A Ak)x = 0, 

(91) - Q Ak)x + AT(k)y + A(k)z = 0. 

Sometimes, we denote the directions A(k)w = (A(k)x, A(k)y, A(k)) by A(k)w(w) to 
indicate their dependence on the point w. Note that the coefficients of the system 
above are the same for the computation of all the directions A(k)w, 1 < k < r. Once 
the computation of A(')w is performed, which takes O(n3) arithmetic operations, the 
directions A(k)w, 2 < k < r, can each be computed in O(n2) arithmetic operations. 
Thus, the overall computation of A()w, 1 <j < r, takes O(n3 + rn2) arithmetic 

operations. 
In fact, explicit expressions for A(k)w = (A(k)x, A(k)y, A(k)z) in terms of the previous 

directions A(L)w, 1 = 1,2,..., k - 1 are given as follows: 

A(k)x (Z + XQ) [I XAT(A(Z+ XQ)-1XAT)LA(Z XQ)1'], 

ky = -[(A(Z + xQ)-XAT) A(Z + XQ)-1 u 

(k)z = Q Ax(k) - ATA(k)y, where 

XZe if k = 1, 
k-I 

(92) U- ) (92) u = j _ E (A(I)X)(A(kk-))e if k > 2. 
/=1 

Note that when the matrix Q = 0, that is, problem (P) is a linear program, then the 
direction A(1)w is exactly the direction Aw - Aw(w) as defined in ?3. Thus, one can 
easily see that the algorithm to be described next, when r = 1, generalizes the one 
presented in the previous section for linear programming. When we consider the 
infinitesimal version of the algorithm described in the previous section, or more 
generally, the one presented in this section when r = 1, we are led to consider the 
solution of the following differential equation in the set W of primal-dual interior 
feasible solutions: 

(93) dw(,) = IA(1)w(w()), 
dIL 

w(M0) = W, 
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where p? and w = (x, y, z) e W are assumed given and (94) determines the initial 
condition for (93). The trajectories of the differential equation (93) are said to be 
induced by the vector field w E W - (> 1)(w) E Wn X m X n. It turns out, by the 
way we motivate our algorithm, that the trajectory induced by this vector field and 
passing through the point w = (x, y, z) is exactly the locus of points traced by the 
path of solutions ws(/) of system (77)-(79) when the weights s = ( ,..., s) are given 
by si = xiZi. 

Before we describe the algorithm based on the rth degree truncated power series, we 
need to introduce some further notation. For w E W, let fmin(w) - min1<i<, fi(w) 
and fmax() = maxl<i<, fi(w). Consider now the point w? E W mentioned in As- 
sumption 4.1 and let 

(95) O?-= (fma(W?) + fmin(WO))/2, 

(96) 8 0 fmax(W0) 
- 

fmin(W?) 

fmax(W0) + fmin(W0)' 

Note that 0? < 1 and that /? and 0? satisfy 

(97) Ilf(w?) - ?0ello < O?<?. 

The fact that we are using the oo-norm is crucial here in order to guarantee that, given 
w? E W, there exist constants ?o and 0? such that 0? < 1 and such that relation (97) 
holds. In general, given any w? E W, the above property does not hold if we use the 
2-norm. This is the main reason for using the oo-norm instead of the 2-norm. 

We now have all the ingredients to describe the truncated power series algorithm of 
degree r. The truncated power series algorithm of degree r studied in this section 
generates a sequence of points wk e W (k = 1, 2,...), starting from the point w0 E W 
(cf. Assumption 4.1) as follows. Given wk E W, wk+l is found by setting wk+l 
wr(wk, a) (cf. (88)), where a > 0 is the step size. As in ?3, we assume that the same 
step size is used for all iterations. The step size a > 0 is determined as follows. Let 
e > 0 be a tolerance for the duality gap (xk)T(zk), so that, like in ?3, we terminate the 

algorithm as soon as (xk)T(zk) < E. The step size is determined as a function of the 
degree of approximation r, the dimension n, the parameter o0, the constant 0? and 
the tolerance e as follows: 

(98) a (2(1/2+3/2r)(1/2+l/2r)q(l/rn(1/2+1/2r)ln(2n E-1to)]l/rj) 

where y = 2/(1 - 0?) and q(r) = 2rkr+iP(k) with the sequence p(k) defined recur- 
sively as follows: 

(99) p(1) = 1, 

k-l 

(100) p(k) = E p(j)p(k -j), k > 2. 
j=1 

We also assume that the tolerance E is given small enough to ensure that a < 1/2. The 
solution of the recurrence relation (99)-(100) is well known and is given by 

(101) p(k) = 
( k - 1) 

The following estimate of q(r)l/r will be useful later. 
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LEMMA 4.2. sUPr q(r)l/r < 16. 

PROOF. Using the formula for p(k) above and the fact that (k) < 2" for all n and 
k < n, we obtain 

2r 

(102) q(r) E p(k) < rp(2r) < 42r) 24 
k=r+l 

and this completes the proof of the lemma. ? 
We are now ready to describe the algorithm, which is presented below. 
Algorithm 4.1. The Truncated Power Series Algorithm of Degree r. 

procedure TruncatedPowerSeries (a, b, c, E, w?) 
1. Set k := 0; 
2. do(xk)Tzk > E 

3. Compute (k)w(wk), for k = 1, 2,.., r, as described above; 
4. Set wk+1 := wr(wk, a) where a is the constant given by (98); 
5. Set k := k + 1; 
6. od; 
end TruncatedPowerSeries; 

The next theorem is a generalization of Theorem 3.2. 

THEOREM 4.3. Let w = (x, y, z) E W and IL > 0 be given such that 

(103) Ilf(w) - yell - max Ixizi - t|l < O! 
1 i i < n 

for some 0 < 0 < 1. Consider the point w = (x, y, z) given by w - wr(w, a), where 
a E (0, 1). Let i =(1 - a)i and 

(104) -+ 1-a (1 ) /2 p(). 
l=r+l - 

Then we have: 
(a) Ilf(w) - Iel] e < I ff. 
(b) If 0 < 1 then w E W. 

Note that the opening of the cone described in the discussion following Theorem 3.2 
gradually increases by a term that depends on the k-powers of the step size, r + 1 < k 
< 2r. The consequences of Theorem 4.3 are as follows. 

COROLLARY 4.4. Let K = a - [ln(2nE -?)]. Consider the first K iterates generated 
by Algorithm 4.1, that is, the sequence (wk}K= . Let .k = (1 - a)k/ and 

(105) 
k = 00 + k[2(r+3)/2y(r-1)/2n(r+1)/2] ar+lq(r). 

Then, for all k = 0, 1,..., K, we have 
(a) Ilf(wk) - kello < kk. 

(b) wk E W. 
(c) (xk)T(zk) < (1 + Ok)ntk < 2ntk. 
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PROOF. From the definition of Ok, K, relation (98) and the fact that y = 

2/(1 - 0?), we have that for all k = 1, 2,..., K 

(106) Ok < 00 + K2(r+3)/2y(r-1)/2n(r+1)/2ar+lq(r) 

= 00 + 2(r+3)/2y(r-1)/2n(r+1)/2arq(r)[ln(2ncE- 0) 

< 00 + y-l 
(0+- -1 

=0+ + 2 

1 + 00 
2 

Since 00 < 1, it follows that Ok < 1 for k = 1, 2,..., K. Note that (a) and the fact that 
Ok < 1 immediately imply (c). The proof of (a) and (b) is by induction on k. Obviously 
(a) and (b) hold for k = 0 due to (97) and Assumption 4.1. Assume (a) and (b) hold for 
k, where 0 < k < K. We will show that (a) and (b) hold for k + 1. If 

1 _ ak 2r k 1/2 1 
(107) k + 1 -- k) n1/2 <k+ 

then, by applying Theorem 4.3 with w wk, w wk+l pu - k and 0 -- k it follows 
that (a) holds for k + 1 and that (b) also holds for k + 1 since 0k+1 < 1. Therefore, 
we only have to show (107) to complete the proof of the corollary. Note that (106) 
implies that 

1 0- 0 
(108) 1 - k 2 Y- 

Using relation (98), (108) and the fact that (1 + Ok) < 2, one can easily verify that 

(109) (1 + k n)/2 < 1 

Hence, from the definition of q(r), ok and the fact that a < 1/2, it follows that 

Ok I 0k 2r k k) \1/2 

1 -k 
1 -1 - 

1/2 r+l 
2r 

1 -- Ik 1 + Ok \(r -1)/2 
+ 1 - Ok n(r +)/2rF+ lq(r) 

< 
k + 4(2y)(r 1)/2n(r'+)/2ar+lq(r) 

= ok + 2(r+3)/2y(r-1)/2n(r+l)/20ar+lq(r) 

= Ok+l 
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where in the third inequality we use the fact that (1 + 9k) < 2 and (1 - 0k)-1 y. 
This shows (107) and concludes the proof of the corollary. * 

As an immediate consequence of the above theorem, we have the following result. 

COROLLARY 4.5. The total number of iterations performed by Algorithm 4.1 is on the 
order of O(pn(r+ )/2[max(log n, log - , log ,l0)](1l+/r)), where - fmax(w0)/fmin(w0). 

PROOF. Let 

(110) K = a-1ln(2nE- 10)1 . 

By (c) of Corollary 4.4, it follows that 

(111) (xK)TzK < 2nUK = 2n(1 - a)K-lO < , 

where the last inequality follows from the definition of K. Hence, Algorithm 4.1 
performs no more than K iterations. Using (96) and the fact that y = 2/(1 - 0?), it 
follows that 

(112) y < 2fm(w0)/fmin(w0). 

By using the last relation, expressions (110), (98) and Lemma 4.2, the corollary follows. 

Let L denote the size of the convex quadratic prograrming problem (P). Then if we 
set E = 2-?(L), then the observation preceding Theorem 3.4 still holds in the context of 
convex quadratic programming problems. Using this observation, we can now state the 
main result of this section, which is a direct consequence of the previous corollary. 

THEOREM 4.6. If the initial iterate is such that fmaxC(w) = 20(L) and the ratio 

(113) fmax(W0)/fmin(W0) = 0(1) 

then Algorithm 4.1 solves the pair of problems (P) and (D) in at most 

(114) O(n1+ )L 

iterations, where each iteration involves O(n3 + n2r) arithmetic operations. 

We now turn our effort towards proving Theorem 4.3. The next result generalizes 
Lemma 3.5. 

LEMMA 4.7. Let w (x, y, z) e W and a > 0 ge given. Consider the point w 
(x, y, z) defined as w - wr(w, a). Then we have: 

2r r 

(115) iZi = (1 -a)x,zi + E (-l)lol (A(J' )(^(-j)Zi), 
I=r+l j=l-r 

(116) ~~~~(A(i)x) 
T (A(i)z ) > 0,~ 
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PROOF. Using (88), we obtain for all i = 1,..., n 

r I 

ii= i + E (-) E A(j)x,i A )J). 
1=1 jj= 

2r r 

+ E (-a)' A(j)x A('-j)z 
l=r+l j=l-r 

From (85), it follows that 

r l 

(117) E (-a)' A(j)xi A(l-j)zi = -axizi 
/=1 j=0 

Combining the two last expressions, we obtain (115). The proof of (116) is similar to 
the one given for (55) of Lemma 3.5 and follows from (90)-(91) and the fact that the 
matrix Q is positive semidefinite. This completes the proof of the lemma. * 

The next lemma provides some bounds on the scaled directions D-' (k)x and 
DA(k)z, where D = (Z-lX)1/2. It is a generalization of Lemma 3.7 and its proof is an 
application of Lemma 3.6. 

LEMMA 4.8. Let w = (x, y, z) E W be given. Consider the directions 

(118) A(k)w(w) 
= (A(k)x, k)y, A(k)z) 

for k > 1. Then we have 

p (k)(xTz) k/2 
(119) max(lID- (k)x, l IDAk)zI} < ( ) 

where D (Z-1X)1/2 and p(k) is defined as in (99) and (100). 

PROOF. The proof is by induction on k. For k = 1, it follows that (119) holds by 
using relations (116), (89), (56) and an argument similar to the proof of Lemma 3.7. 
Assume (119) holds for all j with 1 < j < k. We will show that (119) holds for k. By 
relation (89) and relation (116) of Lemma 4.7, we have 

k-1 

(120) D-1(k)x + DA(k) = -_(XZ)-1/2 E (A(J)X)(A(k-Z)e, 
j=- 

(A(k)X) T (k)z > O. 
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Letting r = D 1A(k)x, s = DA(k)z and t = -(XZ)-1/2k-(A(j)X)(A(k-)Z)e, then, 
by Lemma 3.6, it follows that 

(121) max{ llrl[, lsll)} < Itll. 

On the other hand, using the induction hypothesis, we obtain 

k-1 

|trl = (XZ)-1/2 (A(i)X)(A(k-i)Z)e 
j=1 

k-l 
< 

f/2 
E (A(j)X)(A(k-j)Z) e 

/min j= 1 

1 k-l 

l/2 E (D-lA(i)X)(DA(k-j)z)e 
min j=l 

1k-l 
< I-'7 E IO-l(A(i)X)ll10D(A(k-j)z)ll 

min j=1 

k-1 
/ 

)(XZ)j2 p(k -j)(XT )(k-j)/2 < f 
A 

-T 
p pk j 

Z 

minj2 1 f(- 1)/2 f(.k-j-1)/2 Jmi= 1 Jmin min 

(xTz)k/2 k-1 

- 
(k-l)/2 E p(j)(k-j) 
min j=l 

p(k)(xTz)k/2 
f(k - 1)/2 
Jmin 

where the last equality follows by the definition of p(k). The last relation and relation 
(121) show that (119) holds for k and this completes the proof of the lemma. * 

We are now ready to give the proof of Theorem 4.3. 

PROOF (THEOREM 4.3). We first show (a). From relation (115) and the definition of 
ji, it follows that 

2r r 

(122) xiz - i = (1 - C)(xizi - L) + E (-a)l E A(J)xiA(l-J)zi. 
l=r+l j=l-r 

The absolute value of the summation on the right-hand side of the above expression 
can be bounded with the aid of Lemma 4.8 as follows. Let D = (Z-1X)1/2 and let Di 
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denote the i th diagonal element of the matrix D. Then 

2r r' 

(123) E (-a )t AL l)xA'.-)zi 

(124) r?1 / ^/ r | I- 

/=r+l j =l-r 

2 r 

(124) < a' i lAjl)x illA(/-i)'z 
/=r+l j=l-r 

2r r 

(125) - E a , ID IID 
/=r+1 j=l-r 

2r r 

(126) < a' I ID- A(j)xII lID (/-j)zll) 
l=r+l j=l-r 

2r r j/ j^ X 

(127) < E a' p)(XZ) p(-J )2 

/I=r+ j=l-r min / mn 

(128) = 

? ' [(x 
+ 

n2r 1/2 r 

(128) = f I P p(I)p(l-j) 
/=r+l lmin j=l-r 

2 (r [( 1 ' 0)np 1/2 l 1 

(129) r+ [(/2-1 ) (j)p( j) 

I=r+l - 

where the third inequality follows from (119) and the last inequality follows from 
(103). The last relation, expressions (103) and (122) and the definition of fi imply (a). 
The proof of (b) is similar to the proof of (b) of Theorem 3.2. This completes the proof 
of the theorem. * 

5. Concluding remarks. It should be emphasized that the computed upper bound 
on the number of iterations required by the power series algorithm of ?4 decreases with 

r, the order of the approximation, according to O(n 2(1+lr)L(l+l/r)). Therefore, as 
r --> oo, the upper bound converges to O(Fn-L), the upper bound on the number of 
iterations required by the path following algorithms of group (c) of ?1. On the other 
hand, the work per iteration, namely O(n3 + n2r) arithmetic operations, increases with 
r. When r = O(n) we still obtain O(n3) arithmetic operations per iteration, which is 
the work per iteration required by all interior point based algorithms if no rank-one 

update trick is used [15]. 
The main purpose of this paper was to present a theoretical result. However, based 

on the good performance of both the primal affine [31] and dual affine scaling 
algorithms [1], [20], [23], we feel that the primal-dual affine scaling algorithm has the 

potential of becoming a competitive algorithm. For a practical implementation some 
modifications are required, such as: (1) introducing a larger step size computed by 
means of a ratio test in the first order approximation or by means of a binary search in 
the higher order approximation algorithms; (2) determining an appropriate starting 
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artificial problem that gives a good initial starting point; and (3) making a good choice 
of r. 

Note that when r = 1, the primal-dual affine scaling algorithm described in ?3 can 
be viewed as a simultaneous application of an affine scaling algorithm to the primal 
and dual problems, which implies that both the primal and dual objective functions 
monotonically approach the optimal value. For a practical implementation, this 
suggests that two ratio tests performed independently in the primal and the dual spaces 
respectively, might outperform one ratio test done simultaneously in the primal-dual 
space, since a larger decrease in the duality gap would be obtained. On the other hand, 
the last strategy would be more conservative in the sense that it would keep the iterates 
from coming too close to the boundary of the primal-dual feasible region. 
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