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ABSTRACT
It is well known that the problem of finding a Nash equi-
librium for a bimatrix game (2-NASH) can be formulated
as a linear complementarity problem (LCP). In addition, 2-
NASH belongs to the complexity class PPAD (Polynomial-
time Parity Argument Directed). Based on the close con-
nection between the graph associated with the Lemke algo-
rithm, a vertex following algorithm for LCP, and the graph
used to certify a problem as belonging to PPAD, it is pos-
sible to identify most LCPs processable by the Lemke al-
gorithm (that is, problems for which the algorithm either
finds a solution or provides a certificate that no solution ex-
ists) as belonging to PPAD. The discovery that 2-NASH is
PPAD-complete means that every PPAD LCP can be re-
duced to a 2-NASH. However, the ingeniously constructed
reduction (which is designed for any PPAD problem) is very
complicated, so while of great theoretical significance, it is
not practical for actually solving an LCP via 2-NASH, and
it does not provide the potential insight that can be gained
from studying the game obtained from a problem formulated
as an LCP (e.g. market equilibrium). The main result of
this paper is the construction of a simple explicit reduction
of PPAD LCPs to symmetric 2-NASH problems. In par-
ticular, the cost matrix associated with the resulting game
is constructed from the coefficient matrix of the LCP with
one extra row and column (for LCPs with guaranteed so-
lutions) or with two extra rows and columns (for the other
PPAD LCPs). In addition, we show that the reduction is a
bijection and discuss its implications for solving LCPs via
2-NASH and the potential for getting a deeper insight into
these LCPs.

Keywords
LCP, Linear Complementarity Problem, PPAD, Bimatrix
Games, Nash Equilibrium

1. INTRODUCTION
The linear complementarity problem LCP (q,M) is defined
as

find z

such that Mz + q ≥ 0, z ≥ 0,

z⊺(Mz + q) = 0.

The LCP is notable for its wide range of applications, from
well understood and relatively easy to solve problems such
as linear and convex quadratic programming problems to
NP-hard problems. A major effort in LCP theory had been
the study of variants of the Lemke algorithm, a Simplex
method-like vertex following algorithm. However, while the
method can be applied (and guaranteed to terminate in finite
number of iterations) to any LCP, it may terminate with-
out a solution. An LCP is Lemke-processable if applying the
Lemke algorithm on this problem results in either a solution
or with a certificate that the problem has no solution. One
of the major themes of LCP research over the years has been
the search for classes of matrices M for which LCP (q,M) is
Lemke-processable for all q. Several such classes were iden-
tified (see e.g. [CPS92], [Mur88] and the references therein).

The introduction of the PPAD (Polynomial-time Parity Ar-
gument Directed) complexity class in [Pap94] provides an
elegant framework for analyzing the complexity of Lemke-
processable linear complementarity problems since, in gen-
eral, the directed graph induced by the Lemke method for
a given LCP can be used to verify the membership of the
problem in PPAD. This development is significant with re-
spect to LCP theory since it has been shown in [MP91] that
if PPAD is NP-hard then NP = CoNP, lending support
to the long standing informal belief that LCPs processable
by the Lemke algorithm are in some way special.

What makes the class PPAD particularly interesting is the
fact that several well known problems, such as finding a
Brouwer fixed-point, were identified in [Pap94] as PPAD-
complete. The discovery, in a string of papers ([DP05],
[DP05a], [CD05] and [CD05a]), that finding a Nash equi-
librium of a bimatrix game (2-NASH) is PPAD-complete,
has significant consequences in the context of LCP theory.
It has been known since the early days of LCP research that
the 2-NASH problem can be formulated as an LCP with
roughly the same size and with the coefficient matrix be-
longing to one of several well known classes processable by
the Lemke algorithm. The fact that 2-NASH is PPAD-



complete means that any LCP verifiable as a member in
PPAD (including all classes that contain 2-NASH) can be
reduced to a 2-NASH problem. However, the known reduc-
tion is quite complicated. It requires several stages that
involve reducing the given LCP to finding an approximate
Brouwer fixed point of an appropriate function, followed by
reducing the latter to 3-graphical NASH (using small poly-
matrix games to simulate the computation of certain simple
arithmetic operations), and finally, reducing the 3-graphical
NASH to 2-NASH1. While there seems to be no a-priori rea-
son to suspect that Lemke-processable LCPs are reducible
to bimatrix games, the discovery that 2-NASH is PPAD-
complete motivated us to search for the existence of a direct
simple reduction of PPAD LCPs to 2-NASH problems.

The main result of this paper is the introduction of a di-
rect, simple reduction of LCPs belonging to major classes
of linear complementarity problems within PPAD to sym-
metric 2-NASH problems. We begin by reviewing the LCP
and the Lemke algorithm (in Section 2) and bimatrix games
and Nash equilibria (in Section 3). Next, we introduce (in
Section 4) the complexity class PPAD, briefly discuss its
relation to Lemke-processable LCPs, and identify a number
of LCP classes as PPAD-complete. Our main results are
presented in Sections 5 and 6. In Section 5 we introduce a
very simple reduction for LCP (q,M), where M belongs to a
class of matrices for which a solution is guaranteed to exist
for all q, to a symmetric 2-NASH. In particular, we show that
this class includes all such problems that had been shown in
Section 2 to be Lemke-processable. The cost matrix of the
resulting bimatrix game is composed of M with an extra row
and column. In particular, we show that given an LCP, its
solutions correspond one-to-one to the Nash equilibria which
use with positive probability the pure strategy correspond-
ing to the extra column of the cost matrix of the resulting
game. In addition, we show that the Nash equilibria which
do not use the pure strategy corresponding to the extra col-
umn of the cost matrix of the resulting game correspond
one-to-one to the so-called ‘secondary rays’ associated with
the reduced LCP whenever the Lemke algorithm fails to find
a solution to the problem. In Section 6 we extend the re-
duction of the previous section to LCP (q,M) for which the
existence of a solution is not guaranteed. In particular, we
use an augmented LCP that allows us to identify certain sec-
ondary rays associated with LCP (q,M) which certify that
there is no solution to the problem. The cost matrix of the
resulting bimatrix game in this case is composed of M with
two extra rows and columns. We note that the reductions
cover a wide range of known classes of LCPs such as the
class of all LCPs for which there is a unique solution or the
class of all convex quadratic programming problems (for-
mulated as LCPs). We also point out that, basically, for a
large class of LCPs (not necessarily belonging to PPAD)
one can convert any LCP in this class to a 2-NASH whose
set of equilibria corresponds to the possible output of the
Lemke algorithm applied to the problem. So essentially, for
these problems, applying any solver for 2-NASH produces
whatever the Lemke algorithm does.

These reductions are particulary useful since they provide a
bijection between the reducible LCPs and their correspond-

1A clear ‘bird’s-eye view’ description of the reduction can
be found in [DGP09].

ing 2-NASH problems. In particular, the simplicity of the
reduction and its bijection property allows for the practi-
cal use of the reults of the extensive research of using “non
Lemke type” 2-NASH algorithms for solving reducible LCPs
(see e.g. the surveys in [vSte02],[vSte07] and the papers
introduced in [vSte10]). In addition, these reductions can
be applied to investigate properties of solutions to reducible
LCP via known properties of the associated 2-NASH prob-
lems. they also have the potential to give new insight into
problems that can be formulated as LCPs (e.g. market equi-
librium models) by studying their corresponding bimatrix
games. Finally, we provide some concluding remarks in Sec-
tion 7. In Appendix A we present the definitions of all the
matrix classes addressed in the paper.

Throughout the paper we denote by e vectors all of whose
entries are 1. Given a matrix A, we denote by Ai. the i-th
row of A, by A

.j the j-th column of A, and by Aij the ij-th

entry of A. We denote by R
m×n,Rm×n

+ , and R
m×n

++ the
space of m×n real matrices, the space of nonnegative m×n
real matrices, and the space of positive m×n real matrices,
respectively. Whenever n = 1 we abbreviate Rm×n to R

m,
and whenever m = n = 1 we abbreviate R

m×n to R.

2. LCP AND THE LEMKE ALGORITHM

Given M ∈ R
m×m, q ∈ R

m, the linear complementarity
problem LCP (q,M) is defined as:

find z ∈ R
m×m

such that Mz + q ≥ 0, z ≥ 0, (1a)

z⊺(Mz + q) = 0. (1b)

Note that (1a)–(1b) imply

zi(Mi.z + qi) = 0, i = 1, . . . ,m. (1c)

We denote by FEAS(q,M) the set of all z satisfying (1a),
and by SOL(q,M) the set of all z satisfying (1a) and (1b).

In this section we present the generic Lemke algorithm (the
so-called Scheme I - see [CPS92], 4.4.5). Given LCP (q,M)
with q 6≥ 0 (otherwise z = 0 is a trivial solution), consider
the polyhedral set

F (q,M) , {z ∈ R
m

+ , s ∈ R+| Mz+es+q ≥ 0, z ≥ 0}. (2)

We assume that F (q,M) is nondegenerate2.

Definition We say that (z̄, s̄) ∈ F (q,M) is an almost
complementary (AC) solution of F (q,M), if it satisfies
z̄⊺(Mz̄ + es̄+ q) = 0.

By the nondegeneracy assumption the cardinality of the sup-
port of any AC solution is either m (in which case it is a
vertex (which we call ‘AC vertex’) of F (q,M)), or m+1 (in
which case it is a point on an edge (which we call ‘AC edge’)
of F (q,M). If an AC vertex is contained in an AC edge,
we say that the vertex is an endpoint of the edge. If an AC
edge of F (q,M) is unbounded then it corresponds to a ray

2If it is not, it can be made nondegenerate by applying stan-
dard techniques such as perturbation or lexicographic order-
ing (see [CPS92], 4.9).



(which we call ‘AC ray’) of F (q,M), which can be presented
as
{(

z
s

)

|

(

z
s

)

=

(

z̄
s̄

)

+

(

ū
r̄

)

λ for all λ ≥ 0

}

(3)

where

(z̄, s̄) is an AC vertex of F (q,M) with s̄ > 0, (4a)

ū ∈ SOL(er̄,M) for some r̄ ≥ 0, and with

(

ū
r̄

)

6= 0 (4b)

z̄⊺(Mū+ er̄) = 0, (4c)

ū⊺(Mz̄ + es̄+ q) = 0. (4d)

Note that (z̄, s̄) is the (only) endpoint of the ray.

Consider the AC ray of F (q,M) with endpoint z̄ = 0, s̄ =
−min1≤i≤m qi and with ū = 0, r̄ = 1. We call this ray
the primary ray, and its corresponding endpoint vertex the
initial vertex. We call any other AC ray a secondary ray.
Note that by the nondegeneracy assumption any secondary
ray has ū 6= 0. We denote

SR(q,M) , all (z̄, s̄, ū, r̄) satisfying (4a)–(4d) with ū 6= 0. (5)

Starting with the initial vertex of F (q,M), the generic Lemke
algorithm traces a unique3 finite path of adjacent AC ver-
tices of F (q,M), terminating with either a solution to
LCP (q,M) or with a secondary ray of F (q,M). Specifi-
cally, the algorithm ends with either an AC vertex (z̄ s̄) of
F (q,M) with s̄ = 0 (so z̄ ∈ SOL(q,M)) or with (z̄, s̄, ū, r̄) ∈
SR(q,M) (that is, a secondary ray). The algorithm solves
the given LCP (q,M) if either it ends with z̄ ∈ SOL(q,M),
or if the terminal secondary ray can certify that SOL(q,M) =
∅. Whenever the Lemke algorithm solves LCP (q,M) we say
that LCP (q,M) is Lemke-processable.

Ever since the introduction of the Lemke algorithm [Lem65],
extensive research efforts focused on identifying classes of
matrices M for which LCP (q,M) is Lemke-processable for
all q. In the following we discuss two major groups of ma-
trices containing almost all known classes of matrices M for
which LCP (q,M) is Lemke-processable for all q.

The first group is based on the idea that if SR(q,M) = ∅
then the Lemke algorithm outputs z̄ ∈ SOL(q,M). Specifi-
cally, we consider the class of regular matrices (see [CPS92],
3.9.20) as defined below.

Definition Given M ∈ R
m×m and d ∈ R

m

++, we say
that M is d-regular if SOL(dτ,M) = {0} for all τ ∈ R+.
We denote the class of d-regular matrices by R(d).

It follows that if M ∈ R(e), then SR(q,M) = ∅ for all q
as (4b) with ū 6= 0 can not be satisfied. Recalling that the
Lemke algorithm terminates in finite number of steps with
either z̄ ∈ SOL(q,M) or with (z̄, s̄, ū, r̄) ∈ SR(q,M), we
conclude that whenever M ∈ R(e), LCP (q,M) is Lemke-
processable for all q.

Remark It is well known that M belongs to the strictly
semimonotone matrix class (which is denoted by E) if and

3The uniqueness is due to the assumption that F (q,M) is
nondegenerate.

only if SOL(q,M) = {0} for all q ≥ 0 (see [CPS92],3.9.11).
Thus, it follows that for all d ≥ 0,E ⊂ R(d) . In addition,
E properly includes the strictly copositive matrix class (C),
and the class of all matrices whose principle minors are posi-
tive (P). Thus, we observe that LCP (q,M) with M in E,C
or P is Lemke-processable for all q.

The second group includes classes of matrices for which
SR(q,M) 6= ∅ implies that SOL(q,M) = ∅. Specifically,
most matrix classes with this property that have been iden-
tified in the LCP literature share the following property:

(z̄, s̄, ū, r̄) ∈ SR(q,M) ⇒ r̄ = 0, (6a)

(z̄, s̄, ū, 0) ∈ SR(q,M) ⇒ FEAS(q,M) = ∅. (6b)

A class of matrices that satisfy (6a) is defined below.

Definitions

• We say that M ∈ R
m×m is d-semiregular if for all

τ ∈ R++, SOL(dτ,M) = {0}. We denote the class of
d-semiregular matrices by R0(d).

• We say that M belongs to class USR (for ‘Useful Sec-
ondary Ray’) if M ∈ R0(e) and it satisfies (6b).

Remarks
1. While the term ‘d-semiregular’ is introduced here for

the first time, the class itself has been introduced in
[Gar73] under the name E∗(d).

2. Note that if M ∈ USR then the existence of a sec-
ondary ray for F (q,M) implies that SOL(q,M) = ∅.
Hence, any LCP (q,M) with M ∈ USR is Lemke-
processable for all q.

3. It is well known that M belongs to the semimonotone
matrix class (which is denoted by E0) if and only if
SOL(q,M) = {0} for all q > 0 (see [CPS92],3.9.3).
Thus, it follows that E0 ⊂ R0(d) for all d > 0. In
addition, E0 properly includes the copositive matrix
class (C0), and the class of all matrices whose principle
minors are nonnegative (P0).

4. There are two well known classes of matrices, L and
Q0 ∩P0, which are known to be in USR. In particu-
lar, major matrix classes, including Column Sufficient
(CSU), Row Sufficient (RSU), and Sufficient (SU),

are subsets of P0 ∩ Q0, while Copositive Plus (C+
0 ),

and Copositive Star (C∗

0) are subsets of L. Hence
LCP (q,M) where M belongs to any of these classes
of matrices is Lemke-processable. For a discussion of
these and other Lemke-processable classes see [CPS92]
and [Mur88]. Figure 1 at the end of Section 4 depicts
the relationship among these classes.

3. BIMATRIX GAMES
Let A,B ∈ R

m×n respectively be the cost matrices of the
row and column players of a bimatrix game. A Nash equi-
librium of this game is a pair of vectors x ∈ R

n, y ∈ R
m

(representing mixed strategies for the row and column play-
ers respectively), satisfying

Ay ≥ e(x⊺Ay),B⊺x ≥ e(x⊺By), e⊺x = e⊺y = 1, x ≥ 0, y ≥ 0.



To simplify the presentation we restrict our attention to
symmetric bimatrix games where A = B⊺. In particular,
it has been shown in the seminal paper [Nas51] that every
symmetric bimatrix game has a symmetric Nash equilibrium
(that is, a Nash equilibrium where x = y). In addition, it is
well known that the Nash equilibria for any bimatrix game
with cost matrices A,B (which can be assumed, without loss
of generality, to be positive) can be easily extracted from the
symmetric equilibria of the symmetric bimatrix game with

cost matrix

(

0 A
B⊺ 0

)

.

Given C ∈ R
n×n, we denote by SG(C) the symmetric bi-

matrix game where the row and column players’ cost matrix
is C. We say that v ∈ R

n is a symmetric Nash equilibrium
of SG(C) if

Cv ≥ e(v⊺Cv), (7a)

v ≥ 0, (7b)

e⊺v = 1. (7c)

Note that since v⊺Cv =
∑m

i=1
vi(Ci.v), (7a)–(7b) imply

vi(Ci.v − v⊺Cv) = 0, i = 1, . . . , n. (7d)

We denote by SNE(C) the set of symmetric Nash equilibria
of SG(C). We refer to the problem of finding a symmetric
Nash equilibrium for SG(C) as solving SG(C).

There are several ways of formulating the problem of finding
a Nash equilibrium of a bimatrix game as a linear comple-
mentarity problem ([?],[Eav71], [MZ91], [Sav06]). Here we
adopt the reduction in [Sav06], where the problem of com-
puting a symmetric Nash equilibrium of a symmetric bima-
trix game is presented as a linear complementarity problem.
In particular, let C be the cost matrix of a symmetric bi-
matrix game. Without loss of generality we can assume (by
adding a sufficiently large constant to all the entries of C)
that C > 0. Solving SG(C) with C > 0 can be reduced to
LCP (−e, C) as described in [Sav06], and presented in the
following theorem.

Theorem 1. Suppose C > 0.

(i) Let z ∈ SOL(−e,C). Then, z 1

e⊺z
∈ SNE(C).

(ii) Let v ∈ SNE(C). Then, v 1

v⊺Cv
∈ SOL(−e, C).

Proof. This can be easily verified by substitution.

4. THE COMPLEXITY CLASS PPAD
The class PPAD (Polynomial-time Parity Argument Di-
rected), which was introduced in the seminal paper [Pap94],
is a class of problems which can be presented as follows:

Definition Given a directed graph with every node hav-
ing in-degree and out-degree at most one described by a
polynomial-time computable function f(v) that outputs the
predecessor and successor of a node v, and a node s (which
we call the initial source node) with a successor but no pre-
decessors, find a node t 6= s which is either a sink (a node
with no successor) or a source (a node with no predecessor),

but not both. Whenever we construct such a graph for a
given problem, we call it the PPAD graph associated with
the problem.

Many important problems, such as the Brouwer fixed-point
problem, the search versions of Smith’s theorem, the Borsuk-
Ulam theorem and, as previously discussed, Nash equilib-
rium of bimatrix game, belong to this class [Pap94]. Inter-
estingly, the problems in PPAD are generally believed to
not be NP-hard since it has been shown in [MP91] that
if there exists a PPAD problem which is NP-hard then
NP = CoNP . What makes the study of this class attractive
is that it has been shown that several problems within the
class (such as the Brouwer fixed-point problem) are PPAD-
complete, with strong circumstantial evidence that thiese
problems are not likely to have a polynomial time algorithm
[HPV89].

The PPAD class seems to be a natural framework for an-
alyzing the computational complexity of Lemke-processable
LCP (q,M), as the underlying graph of the Lemke algorithm
whose nodes correspond to AC vertices and AC edges of
F (q,M) has a structure reminiscent of a PPAD graph. In-
deed, in [Pap94], one of the first examples of a PPAD prob-
lem is an LCP (q,M) where M ∈ P. While it is customary
in the literature of linear complementarity to discuss meth-
ods for solving LCP (q,M) under the assumption that M
possesses some special properties, it creates difficulties from
an algorithmic complexity point of view, as verifying these
properties may be by itself a hard problem (e.g. identifying
a P matrix is CoNP complete [Cox73]). Thus, in [Pap94],
the problem at hand (which is called P−LCP ) is defined as
follows. Given M, q, either find z̄ ∈ SOL(q,M), or provide
a certificate (with size polynomial in the size of the prob-
lem) for M 6∈ P. Motivated by the discussion in [Pap94] we
consider the following generic problem:

Y − LCP (q,M) : Given M ∈ R
m×m, q ∈ R

m and a
matrix class Y, find one of the following:

1. z ∈ SOL(q,M),

2. A certificate that SOL(q,M) = ∅,

3. A certificate that M 6∈ Y.

It is shown in [Pap94] how to construct an associated PPAD
graph for the problem P−LCP (q,M) based on the underly-
ing graph whose nodes correspond to the AC vertices and AC
edges of F (q,M). While it is possible to apply the same ap-
proach to verify the PPAD membership of Y −LCP (q,M)
(for all q) for all classes Y that had be shown in Section 2
to be Lemke-processable, we shall not pursue this approach
here. Instead, our reductions of these Y −LCP to bimatrix
games in the next two sections will automatically provide
PPAD verifications for these problems.

As stated in the introduction, it has been established that
the problem of finding a Nash equilibrium for a bimatrix
game (2-NASH) is PPAD-complete. Moreover, since any
2-NASH is polynomially reducible to a symmetric 2-NASH,
we have that the problem of finding a symmetric Nash equi-
librium for a bimatrix game, as presented in Section 3, is
also PPAD-complete. Moreover, it is shown there that



this problem can be represented as an LCP (−e,M) where
M > 0. Since M > 0 implies that M ∈ C, the class of all
matrices for which 0 6= x ∈ R

m

+ ⇒ x⊺Mx > 0, and since
LCP (q,M) with M ∈ C is in PPAD (as we establish in
the next section), we conclude that C − LCP is PPAD-
complete as well. In Figure 1, we display the relationship
among the classes of matrices discussed in the previous and
current sections. An arrow from class X to class Y indicates
that X ⊂ Y. So for anyY reachable by a directed path from
C in Figure 1, we have that if Y−LCP is in PPAD then it
is PPAD-complete. Note that the class USR contains all
the classes of matrices identified in this section as matrices
for which their corresponding LCP (q,M) belong to PPAD
for all q.

PSD

L CSU (augmented)

   SU
  C+

PD

RSU

PPAD 

P 

PPAD-complete 

BG

P0 0

PC E

C*

E0

€C0 P0
NP-complete

USR

R (e)

Figure 1

In the the next section we present a simple reduction from
LCP (q,M) with M ∈ R(e) to a symmetric NASH-2. In
Section 6 we extend the reduction for M ∈ USR.

5. REDUCING LCP WITH GUARANTEED
SOLUTION

In this section we present a simple direct reduction of
LCP (q,M) where M ∈ R(e). This class, as discussed in
the previous section, contains most known matrix classes
of Lemke-processable LCPs which are guaranteed to have a
solution for all q.

Given LCP (q,M) with M ∈ R
m×m and q ∈ R

m, we
set n = m + 1 and a cost matrix C(q,M) ∈ R

n×n for a
symmetric bimatrix game as follows:

C(q,M) =

(

M q + e
0 1

)

. (8)

Given C(q,M) as above we denote any symmetric equilib-

rium point v ∈ SNE(C) as v =

(

u
t

)

, where u ∈ R
m and

t ∈ R. Given SNE(C(q,M)), we partition it to

SNE+(C(q,M)) ,

{(

u
t

)

∈ SNE(C(q,M)) | t > 0

}

,

and

SNE0(C(q,M)) ,

{(

u
t

)

∈ SNE(C(q,M)) | t = 0

}

,

In the next theorem we establish a one-to-one correspon-
dence between the symmetric Nash equilibria of SG(C(q,M))
which use with positive probability the last column of C(q,M),
and the set of solutions to LCP (q,M). We follow this with
a theorem that establishes a one-to-one correspondence be-
tween the symmetric Nash equilibria of G(C(q,M)) which
are not using the last column of C(q,M) and certificates for
M for not belonging to R(e).

Theorem 2.

(i) Given

(

u
t

)

∈ SNE+(C(q,M)), let z = u 1

t
. Then,

z ∈ SOL(q,M).

(ii) Given z ∈ SOL(q,M), let t = 1

e⊺z+1
; u = zt. Then,

v =

(

u
t

)

∈ SNE+(C(q,M)).

Proof. Throughout the proof we denote C(q,M) by C.

(i) Since t > 0, then, by (7d) (with i = n), t = v⊺Cv. Thus,
by (7a)–(7b), Mzt+(q+e)t ≥ et, zt ≥ 0. Dividing by
t, we get Mz + q ≥ 0, z ≥ 0. In addition, by (7d) (for
i = 1, . . . ,m), ui(Mi.u + qit + t − t) = 0, so dividing
by t2, substituting for z, and summing over m, we get
0 =

∑m

i=1
zi(M.iz + qi) = z⊺(Mz + q).

(ii) By (1a), and setting t = 1

e⊺z+1
, u = zt, we have

(

M q + e
0 1

)(

zt
t

)

≥

(

e
1

)

t,

(

zt
t

)

≥

(

0
0

)

and obviously (e⊺z)t+ t = (e⊺z+1)t = 1. In addition,

v⊺Cv = u⊺(Mu+qt+et)+t2 = t2(z⊺(Mz+q)+e)+1)

Thus, since by (1b), z⊺(Mz+ q) = 0, v⊺Cv = t2(z⊺e+

1) = t. Hence, v =

(

u
t

)

satisfies (7a)–(7c), and

since t > 0, we have v ∈ SNE+(C(q,M)).

Theorem 3.

(i) If

(

u
0

)

∈ SNE0(C(q,M)), then u ∈ SOL(eτ,M)/{0}

for some τ ≥ 0.

(ii) Let y ∈ SOL(eτ,M)/{0} for some τ ≥ 0. Then, setting

u = y 1

e⊺y
, we have v =

(

u
0

)

∈ SNE0(C(q,M)).

Proof. Throughout the proof we denote C(q,M) by C.

(i) By (7a)–(7b), Mu ≥ e(u⊺Mu), 0 ≥ u⊺Mu, u ≥ 0, and
e⊺u = 1. Setting τ = −u⊺Mu, we get

Mu+ eτ ≥ 0, 0 6= u ≥ 0.

Moreover, since e⊺u = 1, we have (by (7d)) that

u⊺(Mu+eτ ) = 0, concluding that u ∈ SOL(eτ,M)/{0}
for some τ ≥ 0.



(ii) Noticing that y 6= 0 and by (1a)–(1b),
(

M q + e
0 1

)(

u
0

)

≥

(

e
1

)

−τ

e⊺y
,

(

u
0

)

≥

(

0
0

)

,

and u⊺(Mu+ e τ
e⊺τ

) = 0. In addition,

v⊺Cv = u⊺Mu = −τ
e⊺y

. Thus,

(

u
0

)

satisfy (7a)–(7b).

Noticing that e⊺u = 1, completes the proof.

Considering the definition of R(e), and combining Proposi-
tions 2 and 3, we get the main result of this section: that
the problem R(e)−LCP (q,M) can be reduced to finding a
symmetric Nash equilibrium for the symmetric game whose
cost matrix is C(q,M). Specifically, given M ∈ R

m×m

and 0 6≤ q ∈ R
m, we search for

(

ū
t̄

)

∈ SNE(C(q,M)).

Note that SNE(C(q,M) 6= ∅, and since 0 6≤ q, ū 6= 0. If
t̄ > 0 then ū 1

t̄
∈ SOL(q,M), else ū ∈ SOL(eτ̄ ,M), where

τ = −ū⊺Mū ≥ 0, implying that ū certifies that M 6∈ R(e).

Remarks

1. The Nash equilibria of the resulting symmetric game
correspond to all the end points (sources or sinks) of
the PPAD graph associated with R(e)−LCP (q,M).

2. The class of all matrices M for which LCP (q,M) is
guaranteed to have a solution for all q is called Q.
The largest known class Y which is contained inQ and
for which it is known that Y − LCP (q,M) is Lemke-
processable, is r(e).

3. Since P,C ⊂ E ⊂ R(e), the reduction is applicable to
Y−LCP where Y is P,C or E. Note that LCP (q,M)
has a unique solution for all q if and only if M ∈ P,
and that LCP (q,M) has s unique solution for all q ≥ 0
if and only if M ∈ E.

4. The reduction presented in this section is a bijection
between the solutions of an LCP and the Nash equilib-
ria that uses with positive probability the pure strategy
corresponding to the last column of the cost matrix of
the associated symmetric bimatrix game. This bijec-
tion can expand the reduction applicability. For ex-
ample, one can apply any algorithm which finds all
Nash equilibrium points to find all the solutions of
LCP (q,M) where M ∈ R(e).

6. REDUCING LCP WITH GUARANTEED
INFEASIBILITY CERTIFICATE

In this section we consider LCP (q,M) for which there is
no guarantee that a solution exists. To reduce such prob-
lems to bimatrix games we introduce the augmented problem
LCP (q̃, M̃) associated with LCP (q,M), where

M̃ =

(

M e
−e⊺ 2

)

, q̃ =

(

q
β

)

,

and where β > e⊺x̄ + s̄ for any AC vertex (not necessarily
feasible) (x̄, s̄) of F (q,M).

Remarks

1. It is a standard result in LP theory that if the entries
in q,M are rational then β is of size polynomial in
the size of q,M , and that β can be calculated in time
polynomial in m.

2. Augmented LPC systems where M̃m+1,m+1 is equal to
0 (see [CPS92]) or −1 [Tod73] are used in the LCP
literature to eliminate secondary rays. Such augmen-
tation does not work in our case since the reduction
of LCP (q̃, M̃) to a symmetric bimatrix game would
yield a pure Nash equilibrium (using with probability

1 the strategy corresponding to the last column of M̃)
which yields no information about the solution (or lack
thereof) of the original LCP (q,M). To avoid this pos-

sibility, we need M̃m+1,m+1 > 1, hence the choice of
2.

In the following theorem we establish the relationship be-
tween LCP (q,M) and LCP (q̃, M̃).

Theorem 4. Given LCP (q,M), suppose (1) and (2) are
nondegenerate. Then,

(i)

(

z̄
0

)

∈ SOL(q̃, M̃) if and only if z̃ ∈ SOL(q,M).

(ii) If

(

z̃
s̃

)

∈ SOL(q̃, M̃) then there exists (z̄, s̄, ū, r̄) ∈

SR(q,M) and λ̃ such that

(

z̃
s̃

)

=

(

z̄
s̄

)

+λ̃

(

ū
r̄

)

.

(iii) Let (z̄, s̄, ū, r̄) ∈ SR(q,M). Then there exists λ̃ such

that

(

z̄
s̄

)

+ λ̃

(

ū
r̄

)

∈ SOL(q̃, M̃).

Proof.

(i) The ‘only if’ direction is obviously true. The ‘if’ direc-
tion is similarly true considering the nondegeneracy
assumption (so z̃ is a a vertex of F (q,M)) and by the
definition of β.

(ii) Let

(

z̃
s̃

)

∈ SOL(q̃, M̃) where s̃ > 0. Then

Mz̃ + es̃+ q ≥ 0, z̃ ≥ 0, s̃ ≥ 0, and

z̃⊺(Mz̃ + es̃+ q) = 0, s̃(e⊺z̃ − 2s̃− β) = 0,

which implies that (z̃, s̃) ∈ F (q,M) and (since s̃ > 0)
e⊺z̃ = β + 2s̃. However, by the definition of β, (z̃, s̃)
must be a point on a secondary ray of F (q,M).

(iii) Any point on a secondary ray belongs to F (q,M) which
implies that for all λ ≥ 0,
(

z̄
s̄

)

+λ

(

ū
r̄

)

satisfies all constraints of LCP (q̃, M̃)

except for the last constraint. However, since
e⊺z̄ + 2s̄ < β and ū 6= 0, setting λ̃ = β−e⊺z̄+2s̄

e⊺ū+2r̄
yields

e⊺(z̄+ λ̃ū)+ 2(s̄+ λ̃r̄) = β which completes the proof.



Next, we show that M ∈ R0(e) implies that M̃ ∈ R(e)
which allows us to apply the reduction of the previous sec-
tion to the augmented problem.

Theorem 5. If M ∈ R0(e) then M̃ ∈ R(e).

Proof. Suppose M̃(e) 6∈ R(e). Then, there exists
(

0
0

)

6=

(

ū
r̄

)

≥

(

0
0

)

and τ̄ ≥ 0, such that

(

M e
−e⊺ 2

)(

ū
r̄

)

+

(

e
1

)

τ̄ ≥

(

0
0

)

, and

(ū⊺ r̄)

[(

M e
−e⊺ 2

)(

ū
r̄

)

+

(

e
1

)

τ̄

]

=

(

0
0

)

.

Thus, Mū+ e(r̄ + τ̄ ) ≥ 0, ū⊺(Mū+ e(r̄ + τ̄)) = 0,
and r̄(−e⊺ū + 2r̄ + τ̄) = 0. Moreover, since from the last
inequality above, −e⊺ū+ 2r̄ + τ̄ ≥ 0 we have r̄ + τ̄ > 0 (as
otherwise ū = 0, r̄ = 0). Thus ū ∈ SOL((r̄ + τ̄ )e,M) \ {0},
so (since r̄ + τ̄ > 0) M 6∈ R0(e).

Combining Propositions 4 and 5, and recalling the defini-
tion of the class USR, we get that we can reduce USR −
LCP (q,M) to the problem of finding a symmetric Nash
equilibrium for the symmetric game with cost matrix

C(q̃, M̃) =





M e q + e
−e⊺ 2 −β + 1
0 0 1



 .

In particular, let





z̄
s̄
t̄



 ∈ SNE(C(q̃, M̃)). We then con-

clude that:

1 t̄ = 0. Then by Proposition 3, M̃ 6∈ R(e) ⇒
(by Proposition 5) M 6∈ R0(e) ⇒ M 6∈ USR(e).

2 t̄ > 0. Then (by Proposition 2)

(

z̄ 1

t̄

s̄ 1

t̄

)

∈ SOL(q̃, M̃).

2.1 s̄ = 0. Then (by Proposition 5), z̄ 1

t̄
∈ SOL(q,M).

2.2 s̄ > 0. Then (by Proposition 5), we have
(z̄, s̄, ū, r̄) ∈ SR(q,M).

2.2.1 r̄ > 0. Then, M 6∈ USR.

2.2.2 r̄ = 0. Check whether FEAS(q,M) = ∅.
That is, find either
(a) y ≥ 0 such that y⊺M ≤ 0, y⊺q < 0; or
(b) z ≥ 0 such that Mz + q ≥ 0.4

In case (a), by Farkas’ Lemma (see [CPS92],
2.7.9), FEAS(q,M) = ∅ ⇒ SOL(q,M) = ∅.
In case (b) (where FEAS(q,M) 6= ∅) we con-
clude that M 6∈ USR, as the coexistence of
(z̄, s̄, ū, 0) ∈ SR(q,M) with M ∈ USR im-
plies that FEAS(q,M) = ∅.

4Note that, as it is well known, this check can be carried out
in time polynomial in the size of the given problem.

Figure 1 depicts several well studied classes of matrices M
(in addition to those discussed in the remarks of the pre-
ceding section) for which LCP (q,M) can be reduced, as
described in this section, to a symmetric bimatrix game.
Several of the classes have interesting characteristics as fol-
lows:

• See the second remark at the end of the previous sec-
tion regarding the matrix classes P and E.

• M ∈ CSU (column sufficient) if and only if SOL(q,M)
is convex for all q (see [CPS92], 3.5.8).

• M ∈ RSU (row sufficient) if and only for all q, ev-
ery Karush-Kuhn-Tucker point of the quadratic opti-
mization problem associated with LCP (q,M) is also a
solution for LCP (q,M) (see [CPS92], 3.5.4).

• The convex quadratic programming problem is an op-
timization problem with convex quadratic objective
function and linear constraints. Since the convex quadratic
programming problem can be formulated as an LCP (q,M)
where M ∈ PSD (the class of positive-semidefinite
matrices), we conclude that any convex quadratic pro-
gramming problem can be reduced to a symmetric 2-
NASH.

7. CONCLUDING REMARKS
1. The results of Section 5 can be extended to R(d) for

any d ∈ R
m

++. The key to the extension is the follow-
ing proposition which can be readily verified by con-
sidering the definitions of R(e) and SOL(q,M).

Proposition 6. Let d ∈ R
m

++, and let D be a di-
agonal matrix whose diagonal entries are the entries
of d.

(i) M ∈ R(d) if and only if D−1MD ∈ R(e).

(ii) z ∈ SOL(q,M) if and only ifDz ∈ SOL(D−1q,D−1MD).

Armed with the preceding theorem and replacing F (q,M)
with

F (d, q,M) , {z ∈ R
m

+ , s ∈ R+| Mz+ds+q ≥ 0, z ≥ 0},

and by following the arguments in Section 5, we get
that given d ∈ R

m

++ we can reduce R(d)− LCP to a
symmetric bimatrix game with cost matrix

(

D−1MD D−1q + e
0 1

)

.

Similarly (but with more detailed constructions which
we’ll not present here), it is possible to extend the re-
duction in Section 6 toUSR(d)−LCP , whereUSR(d)
is defined as the set of matrices M ∈ R0(d) for which
the existence of a secondary ray of F (d, q,M) with
r = 0 implies that FEAS(q,M) = ∅.

2. The reductions in Sections 5 and 6 are simple and
easy to execute. Thus, any algorithm that is appli-
cable to bimatrix games can be directly used to solve
Y −LCP (q,M) where Y = R(e) (as described in Sec-
tion 5) and where Y = USR (as described in Section
6). In addition, because the reductions are bijections,



bimatrix game algorithms with different goals, such
as enumerating all, or specific subsets of the solutions,
can be used for similar goals for the linear complemen-
tarity problems for which our reductions are applica-
ble.

3. Over the years several refinements of Nash equilib-
rium have been introduced. In particular, some re-
sults regarding the existence and computation of these
refinements have been established. In [MT98] some
of these refinements are generalized to LCPs. Given
the reduction of LCP (q,M) with M ∈ USR to the
problem of finding Nash equilibrium it provides us
with a tool to investigate analogous questions with
respect to the generalized refinements to LCP (q,M)
with M ∈ USR. In the full version of this extended
abstract, we demonstrate such an analysis by proving
that any LCP (q,M) with M ∈ R0(e) has a proper so-
lution. As a corollary of this analysis we proved that
the (unique) solution of LCP (q,M) where M ∈ P, is
proper and thus setteled a conjecture posed in [MT98].
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APPENDIX

A. CLASSES OF MATRICES
We use [CPS92] as the primary reference for these defini-
tions. Suppose M ∈ R

n×n.

M is a positive semi-definite (PSD) matrix if xTMx ≥ 0 for
any x.

M is a positive definite (PD) matrix if x⊺Mx > 0 for any x 6= 0.

M is a P0 matrix if all its principal minors are nonnegative.

M is a P matrix if all its principal minors are positive.

M is a column-sufficient (CSU) matrix if for any vector x and
for every i = 1, 2, . . . .m, xi(Mx)i ≤ 0, then xi(Mx)i = 0
for all i = 1, 2, . . . ,m.

M is a row-sufficient (RSU) matrix if its transpose is a CSU
matrix.

M is a sufficient (SU) matrix if M ∈ RSU ∩CSU.

M is a copositive (C0) matrix if x⊺Mx ≥ 0 for any x ≥ 0.

M is a strictly copositive (C) matrix if x⊺Mx > 0 for any 0 6=
x ≥ 0.

M is a copositive-plus (C
+
0 ) matrix ifM is copositive and x⊺Mx =

0, x ≥ 0 implies that (M +M⊺)x = 0.

M is a copositive-star (C∗

0) matrix ifM is copositive and x⊺Mx =
0, Mx ≥ 0, x ≥ 0 implies that M⊺x ≤ 0.

M is a semimonotone (E0) matrix if for any non-zero x ≥ 0,
there exists an index k such that xk > 0 and (Mx)k ≥ 0.

M is a strictly semimonotone (E) matrix if for any non-zero
x ≥ 0, there exists index k such that xk > 0 and (Mx)k > 0.

M is a E1 matrix if for every nonzero vector z ∈ SOL(0,M),
there exists non-negative diagonal matrices D1 and D2 such
that D2z 6= 0 and (D1M +MTD2)z = 0.

M is a L matrix if M is M ∈ E0 ∩E1.

M is a Q0 matrix if SOL(q,M) 6= ∅ for all q for which
FEAS(q,M) 6= ∅.


