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Abstract—We formulate a two-settlement equilibrium in com-  not well understood whether forward trading may in fact help
petitive electricity markets as a subgame-perfect Nash equilib- generators with market power in the spot market to lock in or
rium in which each generation firm solves a Mathematical Pro- even increase Oligopoly rents.

gram with Equilibrium Constraints (MPEC), given other firms’ . ) .
forward and spot strategies. We implement two computational In this paper, we formulate the two-settlement competitive

approaches, one of which is based on a Penalty Interior Point €lectricity market as a two-period game, and its equilibrium
Algorithm and the other is based on a steepest descent approach.as a subgame-perfect Nash equilibrium (see [8]) expressed in
We apply the algorithm to a six node illustrative example. the format of an Equilibrium Problem with Equilibrium Con-
straints, in which each firm faces a Mathematical Programming
problem with (linear) Equilibrium Constraints (MPEC) given
other firms’ commitments in forward contracts. We implement
The last decade has witnessed a fundamental transformati@d solution approaches which are based on Penalty Interior
of the electric power industry around the world from on@oint Algorithm (PIPA) and Steepest Descent Method and
dominated by regulated vertically integrated monopolies tgpply them to a 6-node and 8-line illustrative example. For the
an industry where electricity is produced and traded asspecific data and simplifying assumptions of the example, both
commodity through competitive markets. In the US, thigpproaches give the same result showing that in the equilib-
transformation was pioneered in the late 1990s by Californimum, firms commit certain quantities in forward transactions
and the northeastern power pools including Pennsylvanignd adjust their positions in the spot market responding to
New Jersey-Maryland (PJM) Interchange, New York angbntingencies and demand realization. We plan to explore this
New England, which established markets for electricity. fssue in future work under the more realistic assumption of
recent arrival is the ERCOT market in Texas. Lessons froguadratic cost functions.
the accumulated experience in the early-restructured marketSince our model relies on solving Complementarity Prob-
are being incorporated in market reforms and new markeins and Mathematical Program with Equilibrium Constraints
designs. While there are significant differences among t{i/PECs), we shall first introduce these concepts. A Mixed
many implemented and proposed market designs that varyGomplementarity Problem (MCP) is defined as follows: find
terms of ownership structure, level of centralization and thector» € R"™ such thatr > 0, f(z) > 0, f(x)T2 = 0 and
authority of the system operator, most market designs in ther) = 0, where functionsf : R* — R™ andg : R — R™
US have adopted or are in the process of adopting a multe given. If f(x) and g(z) are affine functions, the MCP
settlement system approach where forward transactions, @ mixed Linear Complementarity Problem (mixed LCP). If
ahead transactions and real time balancing transactions @fe) is omitted, it becomes a Linear Complementarity Problem
settled at different prices. Theoretical analysis and empiriqalCP) (see [7]).
evidence suggests that forward trading reduces the incentive MPEC (see [15]) is an optimization problem with two sets
of sellers to manipulate spot market prices by reducing tlé variables,z andy, in which some or all of its constraints
sensitivity of sellers’ profits to spot prices fluctuations. Thuare defined by a parametric variational inequality (sometimes
forward trading is viewed as an effective way of mitigatingalled complementarity system) withas its primary variables
market power at real time. However, due to the complexignd = as the parameter vector. Specifically, suppose fhat
of the problem, it is not clear to what extent suppliers arB”*™ — R and F' : R*™™ — R™ are given functions,
willing to engage in forward transactions. Furthermore it i€ C R*™™ is a non-empty closed set, add: R* — R™ is

N ) ) ) ) . aset-valued map with (possibly empty) closed convex values.
Copyright 2003 IEEE. Published in the Proceedings of the Hawaii Inter- he MPEC is defined as:
national Conference On System Sciences, HICSS37, January 5-8, 2003, BigT e IS ae :
Island, Hawaii min f(z,y)
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I. INTRODUCTION



defined by the paifF(z),C(x)); i.e.y € S(x) if and only if using the concepts of strategic substitutes and complements
ye C(z)and (v —y) T F(x,y) >0 for all v € C(x). of Bulow, Geneakoplos and Klemperer [4]. In these terms,
The rest of this paper is arranged as follows. Relatéde availability of the forward market makes a particular
research on models with transmission constraints and forwgmiducer more aggressive in the spot market. Due to the
markets are reviewed in the following section, section IBtrategic substitutes effect, this produces a negative effect on
presents the model assumptions and the mathematical forritsi-competitors’ production. The producer with access to the
lation. Two approaches for solving the problems are given farward market can therefore use its forward commitment to
section IV. An example, numerical results and conclusions drsprove its profitability to the detriment of its competitors.
presented in sections V and VI. Allaz shows, however, that if all producers have access to
the forward market, it lead to a prisoners’ dilemma type of
effect, reducing profits for all producers. Allaz and Vila [2]
extend this result to the case where there is more than one time
We review models of spot energy markets with transmissigieriod where forward trading takes place. For a case without
constraints as well as models that include forward marketmcertainty, they establish that as the number of periods when
Most of the spot market models with transmission constrairfigrward trading takes place tends to infinity, producers lose
assume either perfect competition or an oligopoly based on their ability to raise market prices above marginal cost and
Cournot conjectural variation. Assuming that the agents act#g outcome thanks to the competitive solution.
price takers in the transmission market allows such models
to be solved as complementarity problems or variational

inequalities. L . -
gontracts and their impact on an imperfectly competitive

Wei and Smeers [20] consider a Cournot model wit . )
regulated transmission prices. They solve the variational i lectricity spot market: the UK pool. von der Fehr and Harbord

equalities to determine unique long-run equilibria in the ] focus on price competition in the spot market with capacity

models. In subsequent work, Smeers and Wei [19] consideF%nStraintS and multiple demand scenarios. They find that con-
separated energy and transmission market, where the sys is tend to put downward pressure on spot prices. Although,

operator conducts a transmission capacity auction with pov& Is provides disincentive to generators to offer such contracts,

marketers purchasing transmission contracts to support bil greis a counter\./alllng. force in that selling a .Iarg.e number
%Scontracts commits a firm to be more aggressive in the spot

Il. RELATED RESEARCH

von der Fehr and Harbord [9] and Powell [18] study

eral transactions. They conclude that such market conver ket and that it is dispatched into its full "
to the optimal dispatch for a large number of marketer 1arket, and ensures that 1t1s dispatched Into IS Tull capacity

Borenstein and Bushnell [3] use a grid search algorithm that more_demand scenarios. P(_)V\_'e" [18] exp_hutly models re-
iteratively converges to a Cournot model based on data frg ntracting by Regional Electricity Companies (RECs.) after
the California market the maturation of the initial portfolio of contracts set up after

deregulation. He adds risk aversion on the part of RECs to

Hobbs et al [12] calculate a Cournot equilibrium under ~ - . .
the assumptions of linear demand and cost functions Whigﬁrher models. Generators act as price setters in the contract
' arket. He shows that the degree of coordination has an

Ie_ads toa I_mear mixed complementarlt_y pro_blem. Ina markﬁn%gact of the hedge cover demanded by the RECs, and points
without arbitrageurs, non-cost based price differences can arise€ -, - .
a “free rider” problem which leads to a lower hedge cover

because the bilateral nature of the transactions gives firlﬁs
more degrees of freedom to discriminate between electricﬁyosen by the RECs.
demand at various nodes. This is equivalent to a separated
market as in [19]. In the market with arbitrageurs, any non- Newbery [16] analyzes the role of contracts as a barrier to
cost differences are arbitraged by trades who buy and sefitry in the England and Wales electricity market. He extends
electricity at nodal prices. This equilibrium is shown to bearlier work by modeling equilibria of supply functions in
equivalent to a Nash-Cournot equilibrium in a POOLCO-typghe spot market. He further shows that if entrants can sign
market. In another paper [13], Hobbs presents an oligopolisbase load contracts and incumbents have enough capacity, the
market where each firm submits a linear supply function iacumbent can sell enough contacts to drive down the spot
the Independent System Operator (ISO). He assumes that fiprise below the entry deterring level, resulting in more volatile
can only manipulate the intercepts of the supply functions, bspot prices if producers coordinate on the highest profit SFE.
not the slopes, while power flows and pricing strategies a@apacity limit however may imply that incumbents cannot
constrained by the ISO’s linearized DC optimal power flowlay a low enough SFE in the spot market and hence cannot
Each firm in this model faces an MPEC problem with spatialeter entry. Green [11] extends Newbery's model showing
price equilibrium as the inner problem. that when generators compete in SFEs in the spot market,
Work in forward markets has focused on the welfare enhartegether with the assumption of Cournot conjectural variations
ing properties of forward markets and the commitment value the forward market, imply that no contracting will take place
of forward contracts. The basic model in Allaz [1] assumamless buyers are risk averse and willing to provide a hedge
that producers meet in a two period market where there psemium in the forward market. He shows that forward sales
some demand uncertainty in the second period. Allaz shossn deter excess entry, and increase economic efficiency and
that generators have a strategic incentive to contract forwaotg-run profits of a large incumbent firm faced with potential
if other producers do not. This result can be understo@atrants.



I1l. THE MODEL ProblemS: The system operator decision problem in the
. _ third stage of the spot market.

A. Introduction and assumptions ProblemF,: The generation firms’ decision problems in the
. . A forward market in which the preceding problems are imbedded
We introduce a model for calculating the equilibrium quan- : . AL "
. . - . . and whose solutions provide the equilibrium entities.
tities and prices of electricity over a given network for a given
period that is denoted as period 2. We consider two markets,
the spot market that operates at period 2, and a forward marRetNotation
that operates at a preceding period that we denote as per@ppSetS;

1 e« N: The set of all nodes

We model the spot market in the topology of the trans- | 7. The set of all zones
mission network through the DC approximation of Kirchoff's | 1. The set of all transmission lines
laws. Specifically, flows on lines can be calculated by a power, - The set of all states of contingencies
transfer distribution factor (PTDF) which gives the proportion | - The set of all generation firms
of flow on a particular line resulting from an injection of one | nG. The set of nodes at which firm owns generating
unit at a particular node and a corresponding withdrawal at an fa?:ilities.
arbitrary (but fixed) “slack bus”[6]. Different PTDF matrices NZ: The set of nodes in zone We denote by
with corresponding probabilities characterize uncertainty re- 2(i) The zone where noderesides.
garding the realized network topology in the spot market. T - . )
avoid non-convex issue in the spot market (see [5], [17]), e) Deuspn variables: )
assume that agents do not game the transmission prices. F(;rrhe variables related_ 0 .the forward markets are:
simplicity we assume that all nodes are both demand nodeg [=* The forward price in zone.
and generation nodes and that there is exactly one firm owning Zs.=* 1he forward quantity of firy in zone:z.
generation facility at each node. The capacities of the facilitiesThe variables related to the spot markets are:
(as well as of the lines) are unknown at period 1 and are subject r¢ : Adjustment quantity into/from nodeby the system
to stochastic fluctuations in period 2. To further simplify the  operator in state.
formulation we assume no wheeling fees. « ¢¢: The quantity generated at nodén statec.

Firms enter contracts in the forward market (which ig3) Parameters:
organized in zones that may include several nodes) in period 1,
which are settled financially in period 2, based on a weighted
average of the nodal prices corresponding to the nodes in
each respective zone. The weights are typically based on
historical load ratio for each node. We assume that risk neutral,
speculators take opposite positions to the firms and that by
anticipating any arbitrage opportunities the forward price in
a zone is set equal to the expected weighted nodal prices (of
the same zone) from the spot market. We plan to relax this
assumption in future work to capture how lack of liquidity (or
high risk aversion) on the buyers side might be reflected ina ;2" 5ssume to be the total capacity of figs facilities
high risk premium embedded in the forward prices. in zonez at the “normal” state.

We view the two settlement in the electricity market as a, , - Fj 'S risk- i icient.
complete information game with two periods. Our formulation zi()blz(lcr)m S;ngﬁ‘fgﬁ'g&g?: I;:?an;pot market.
approach is to model the equilibrium in this two period
model as a subgame-perfect Nash equilibrium. We model
the second period of the game as a subgame with thiee
stages. In the first stage Nature determines the state of thdhe no-arbitrage assumption implies that the forward price
world (and thus settles the actual capacities of the generatisrequal to the expected value of weighted spot nodal prices.
facilities and the transmission lines as well as the shape Dfat is:
the demand and cost functions at each node). In the second ¢, — E[ Y 6:ipSqs +1%)] (p1)
stage, firms anticipate arbitrage in stage three and compete in iENZ
a Nash-Cournot manner. In the third stage, the system operatberes; (5, > 0, ZieNZZ 0; = 1) are weights that are used
arbitrages any non-cost differences in nodal energy pricestscsettle the forward contracts.
that there is no spatial discrimination in energy prices subjectin stage two of the second period, for a given stateach

gs: Capacity of generation facility at nodein statec.

p$(+): Inverse demand function at noden statec.

We assume that the inverse demand function is linear
whereps(g) = a¢ — biq,

s;(+): Cost function at node. We assume that the cost
function is linear wheres;(¢) = d;q.

K} : capacity limit of linel in statec.

Dy ; : Power transfer distribution factor in stateon line

[ with respect to node.

e T4 An upper bound on the forward quantity ., which

The Formulation

to transmission congestion. firm g solves the following profit maximization problem :
Specifically, the equilibrium is determined by considering G, : max e
three classes of optimization problems: %

Problem G,: generation firms’ decision problems in the subject to:
second stage of the spot market. 0<¢qf <7q i€ NgG (91)



where mg = 3 [pi(e7 + m9)af — si(g))] + ZZ(fz - niqs =0 (KKT18)
LENS z€ . - . .
e In period 1, each firny determines the forward quantities
zgz\;z 6ip5(a; + ).« Is the profit of firmyg in statec in (bounded by the capacities of the facilities of fir@) by
thezspot market. maximizing the value of the forward transactions subject
Following the preceding problems, the system operatit the KKT conditions (KKT1-KKT18) which represent the

solves the following social welfare maximization problem: anticipated actions in period 2. Thus firg optimization
S: max 3 U«rf (e + wy)duw] problem in period 1 is:
| oma o Pi\d i) AW;
TS EN

T F: max Elng] — Bvar(my)
subject to: subJect o
£ =0 s1
0 (s1) Ty, <Ty. 2€2 (f1)
—Kf< ) Diri<Kf, lel (s2) and constraints (p1), (KKT1-KKT18)
i€EN
@ +re>0, ieN (s3)

To rational for the system operator’s problem, is that in th@. Further Conversion

absence of wheeling fees, it is possible to gain social surplusproblem F is a Mathematical Program with Equilibrium
by output/inputdw; units of electricity from/to node while  Constraints (MPEC). For the purpose of further simplification,
input/output it to/from other nodes until the prices at the nodgg define

are equal, or until some transmission lines are saturated.
Since the nodal inverse demand functions as well as the cost

functions are assumed to be linear, both prob{gnandS are

concave quadratic programming problems, which implies that

4. The vector of firm g's forward variables.
xg [€g,2,2 € Z]
« x: The vector of all firms’ forward variables.

=|z,,9 € G
first. qrder necessary conditions (the KKT conditions) are also, y: Trgegvgctor ]of lagrangian multipliers for all inequality
sufficient. _T_hus, we can replace proble@is and S by their CONs ramts
KKT conditions. n¢
Let ¢ be the Lagrangian multiplier to constraint (s, ¢
and A7, be the Lagrangian multipliers to constraint (s2), and y= | ¢ | ceC,ie N,le€L
B¢ be the Lagrangian multipliers to constraint (s3). Then Af
the KKT conditions for problemsS (including the feasibility Ay
constraints) are: e v: The vector of adjustment quantities and the multi-
for ceC , leL , ieN pliers a°.
c _ T?
jgvrjio (KKT1) v | a° | ceCiieN
ag — bS(qf + %) — o + ¢ o w: The slacknefs of the inequality constraints.
+ 2 (D — A Diy) =0 (KKT2) i
teL q; — 4q;
Af_ >0 (KKT3) q1+r ceC,ieNJleL
> Dg s+ Kf >0 (KKT4) W= 1S Dyt + Kf (w1)
]EN JGN
(ZDlzz+Kl) 0 (KKTS) ZDljj
1EN JEN
AL >0 (KKT6) Then constraints (KKT1-KKT18) and (wl) become a mixed
Kf - Z Dy;r5 =20 (KKT7) LCP with respect tav, y andv with = being the parameter.
Note thatv can be solved from constraints (KKT1) and
b (5 Z Dir 7) 0 (KKT8) (KKT2), we can eliminatey from this mixed LCP, to obtain:
B >0 (KKT9) w=a+ Az + My
g +ri>0 (KKT10) w>0,y >0
Bs(gE+r)=0 (KKT11) wly=0

Similarly, let n$ and ~v{ be the Lagrangian multipliers wherea, A, and M are suitable vector and matrices derived
associated with constraint (g1), then the KKT conditions fdrom (KKT1-KKT18) and (w1).

problemg, are: Thus the two-settlement equilibrium can be converted to an
for ceC , ieN Equilibrium Problem with Equilibrium Constraints (EPEC),
a$ — 2b5q5 — bsrs — di+ in which each firm faces (given other firms’ commitments) an
(1= prob(e))dibiz -y — ¢ +n° =0 (KKT12) MPEC problem:
vE >0 (KKT13) Join - f(z, y, w)
qz —q; =0 (KKT14) subject to:
(@ —q) =0 (KKT15) g <Xy, V2 €L (f1)
n; 20 (KKT16) w=a+ Az + My (EC1)

>0 (KKT17) w>0,y>0 (EC2)



wly =0 (EC3) starting from a feasible vector of forward variables we
where f(z,y,w) is the objective function of problen# solve forx; usingz_; as data in the first firm’s optimization
expressed in term of, y, andw. problem, where #_;” means all firms’ forward variables
except for firm 1’s; then use_, to solvezs, and so on. In
Theorem 1:If af are the same for ali € N for any each iteration, we solve a MPEC problem for one firm. Based
given statec, and they are greater tha#y, then the left- on the technologies solving MPEC problems, we develop two
hand inequality of constraint (g1) and costraint (s3) are nevapproaches, namely iterative Response Surface Method (RSM)
binding in the optimal solution. and iterative Penalty Interior Point Algorithm (PIPA).
Proof: This is not hard to see: In proble¢, generating
some small quantity at any nodalways dominates generatinga. Approach 1: iterative RSM
nothing; and in problens, dispatching all generated quantity

In thi roach, w Ive MPEC problem ing R n
on any node to other nodes will never maximize social Welfarg S approacn, we solve C problems using Response

urface Method (RSM) by iteratively searching steepest de-
scent (SD) direction. For some small positive valjealled
is symmetric and positive semi-definite. step size, we define,’s neighborhood set as all feasjble points
Proof: Note that the left-hand inequality of (g1) and Wlth the format (- + ¢, ¥z € Z). When searching steep
' descent direction, we test the responding objective value for

constraint (s3) are never binding in the optimal solution
the assumption of theorem 1. Thus, we can drop these tga(:h boint in the neighborhood setuof combined withr —,

constraints, as well as the corresponding multiplies, from t % solving w and y through PATH solver [8], and the only
LCP préblem w ponding multipll rﬂ) int with best objective value is kept for next search. Figure

Also note that the LCP problem above can be divide d|IIustrates the case whed| = 2.
into sub-problems according to the states of contingencies,
therefore it suffices to prové/ is symmetric and positive
semi-definite for each state.
For any state, lete ¢ RI"N! be a vector with all ones be
a diagonal matrix withb;; = b$,Vi € N, and D be a matrix
with D, ; = Dii,Vl € L,Vi € N . It can be shown that

Theorem 2:The conditions of Theorem 1 implies thaf

0 0 0
M=| 0 DQEDT —D@DT |+
0 —-DQ@DT DQ@DT

H! H'BQDT —H'BQDT
DQBH™! DQBH '*BQDT —DQBH 'BQDT
—-DQBH™! —DQBH—lBQDT DQBH 'BQDT
1 leeT B~
whereQ = B~ — PTB e is symmetric positive semi- Fig. 1. Neighborhood set and SD direction
definite andH = —BQ B+ 2B is symmetric positive definite.
Moreover, gote that/ can be written as: The following describes this approach:
e o o o
M = DQDT)3 0 (DODTY: —(DODT): |+ 1. (In|t|_at|on) Select initial vaIL!es of” andeg. k :=0.
( —(DQDT ))% [ (DQD™)? (D@D™)? ] 2. (Main loop) Letz**! := z*, increasek by 1, letg := 1
-3 3. (Steepest descent direction search) ketbe the point
DQBH-* [ H-% H-YBODT _H-BQDT ] with highest objective value in the neighborhood set of

—DQBH™ 3 ah If s haf a worse objective value thafj, go to step
Therefore,M must be symmetric positive semi-definite.m 4; else letz, := s* and repeat this step.
4. (Nextfirm) Letz} = 0.5(zf+25~1). If g < |G|, increase
Following the monograph [7], the LCP problem (EC1- ¢ by 1 and go to step 3.
EC3) satisfies thev-uniqueness condition, thus it also has a5. (Termination check) If £* = 2*~') and ¢ is small

unique solution given that problens and G, are both non- enough), stop and a solution is found; otherwise, set
degenerate. €r+1 := €x/2, then go to step 2.
IV. SOLUTION APPROACHES B. Approach 2: iterative PIPA

The EPEC in the forward market are constrained in non- In this approach, we solve MPEC problems using Penalty
convex regions by the LCP problem (EC1-EC3), therefore waterior Point algorithm (PIPA). See the monograph [15] for
cannot write down the optimality conditions for each ager@ore details regarding PIPA. Our key idea of penalty interior
and aggregate them into a |arge pr0b|em which we can Soﬂ@int method is as follows. Assume we have a MPEC problem:
directly. We attempt to solve for an equilibrium, if at least one  min f(z,y, w, v)
exists, by iteratively deletion of dominated strategies, that is, subject to :
we sequentially solve each firm’s optimization problem using =z € X
as data optimal value from previously solved problems. Thus, F(z,y,w,v) =0



y>0,w=>0

yTw =0
wherez € R,y € R™,w € R™,v € R'. We define two
auxiliary functions:

the constraints violation function

Y(x,y, w,v)
and the penalized objective function

flz,y,w,v) + ap(z,y, w,v)
Given a point(z,y, w,v) € X x RT, x R, x R!, we solve
a quadratic program whose solution yields a descent direction
for the function P,. A one-dimension search is carried out
along this direction so as to decrede This new(z, y, w, v)
is then the starting point for the next search.

The PIPA algorithm solves above MPEC problem in the
following steps.

0. (Initiation) let (2°, 4%, w% %) € X x R, x R, x R!
be glven Lets satisfying

T N

1<i<m
andop < min(p,0.1). Setr := 0, := 1.2.
1. (Direction generation) let the unique optimal solution of 3. (PIPA) Calculatex
the quadratic programming k@a", dy", dw", dv"):
min(df;)dz + (df,)dy + (dfy,)dw + (dfy ) dv + 0.5(dz) T dx

= F(LU, y,wW)TF(CE,%waU) + wTy,

Pa(x7y7 w’ U) =

Fig. 2.  An example

while treating z* , as constants
through PIPA algorlthm

4. (Next firm) Letzk := 0.5(zF + 25=1). If g < |G,

subject to: increaseg by 1 and go to step 3.
2" +dr e X 5. (Termination check) If the errdr z*~! —2* || is enough
/| F7 |2 +(w")Tyre < dz < /|| FT |13 +(w")Ty"e small, stop and a solution is found; otherwise, go to step

(dFy)dx + (dFy)dy + (dF})dw + (dFy)dv = —F" 2.
diag(w")dy + diag(y")dw = —diag(w")y" + o, L L _ _

Whé?ggﬁ i %(xr z;g(z}) sz) iag(w")y” +or e As you will see, these approaches succeed with our formu-
Let o — of Wf71ere7p is the smallest integer such thaf@ion and the example. However, one has to be careful with
(dfr)dl,:_i_ (df;)_jyr +(dfr)dw” + (dfT)do" these approaches, if they are applied to some general EPEC

7053071(2 I F}y”g H(1— 0:’)<yr)Twr) ! problems. It might happen that:

< (2", y", W, v") 1. Neither of these two approaches can guarantee conver-
2. (Step size determination) define a linear function ) ?\lent(;]e. i . ) v find

(F) =(1-7 T(y"')T’w"'_'_ durd _(dyT)wa"' - Neither of these two approaches can only find pure-

gr(r) = (1 =)oy T(lggn yidw; ) strategy equilibria. Therefore, they will fail if applied to

Let 7 be the unique root of the functiog).(r) for 7 € (0, 1)
if this root exists; letr,- := 0.95 if g,.(7) has no root in (0,1].
Let 7, := 7,.0.95* wherek is the smallest nonnegative integer

games with only mixed-strategy equilibria. For example,
if these approaches are applied to a zero-sum matching-
penny game, they will never converge.

such that 3
" (1) = a" + 1pda”
y () =y" + 7rdy”
w (1) = w" + Tdw”
o' (1) = 0" + T.do”
V(@ (), y" (), 0" (1), 07 (7)) < (", y" w0 0")
Po, (2" (), y" (77), w" (72),0"(77)) — P, (2", 9", w", 0")

< 0.57-((dfy)dz" + (dfy)dy" + (dfy,)dw"” + (dfr)dv )

. Noting that both approaches search for local minimum
point, we can only guarantee that the limiting point,
if any, is only the firms’ locally best responses to one
another. To test the limiting point is actually Nash equi-
librium, we have to verify that it is the firms’ globally
best responses to one another. This verification can only
be done by grid search. If the verification fails, we need
to start over.

—a, (2 [ F7 3 +(1 = o) (y")Tw")

< —0.579(a", y", w", ") V. A NUMERICAL EXAMPLE

3. (Tern]ri?ation check) Qrelﬁn@”l = 2'(,;), "' == |n this example, we consider the setup in which the market
y' (1), w = wh(r), v = 0"(7y). If stopping rule  has two zones (see figure 2). Each zone has three nodes. Zone

is satisfied, terminate; otherwise choase.; to be a scalar j contains nodes 1, 2 and 3, while nodes 4, 5, and 6 are in zone

satisfying0 < 0,41 < o, and return to step 1 with replaced 2 There are two firms in the market: firm 1 and firm 2. Firm

by r + 1. 1 owns generation facilities at node 1, 3 and 4 while the firm
The following gives the detail of this approach: 2 owns generation facilities at other three nodes. There are
1. (Initiation) Select initial values afg, k := 0 eight transmission lines, each of which has the same electric
2. (Main loop) Letz**! := z*, increasek by 1, letg :== 1. characteristics except that the flow gates, line 2-4 and line 3-5,



TABLE Il
NODAL INFORMATION IN THE NORMAL STATE.

Node | Inverse demand function weight marginal cost capacity PTDF on line 2-4 PTDF on line 3-5
1 70 -87.5q 1/3 30 4.5 0.5 0.5
2 70 -87.5q 1/3 30 4.5 0.6 0.4
3 70 -87.5q 1/3 25 4.5 0.4 0.6
4 70 -100q 1/3 30 4.5 -0.1 0.1
5 70 -100q 1/3 20 4.5 0.1 -0.1
6 70 -100q 1/3 20 4.5 0 0
TABLE | TABLE IV
STATE OF CONTINGENCIES SPOT PRICES DUE TO FORWARD
state Probability Type and Description state node node node node node node
1 .82 Normal state: 1 2 3 4 5 6
. . gata s set as n table 1. T | 4518 | 4518 | 4518 | 4518 | 4518 | 45.18
- e “gce.”a'”ty- by 10% 2 3417 | 3417 | 3417 | 3417 | 3417 | 3417
5 o3 5 e”&a" S ";C.reta?e y V. 3 31.10 | 31.10 | 31.10 | 31.10 | 31.10 | 31.10
: Al tomands. decrense by 10% Z 3457 | 3457 | 3457 | 30.76 | 30.76 | 30.76
i 03 Network uncertainty: y . 5 34.57 34.57 34.57 30.76 30.76 30.76
’ Line 2-4 goes dov%l/h 6 35.05 35.05 35.05 35.05 35.05 35.05
5 03 Network uncertainty: 7 34.89 35.34 34.44 32.18 33.08 32.63
Line 3-5 goes down.
6 .03 Generation uncertainty:
Facility at node 4 goes down. TABLE V
7 .03 Generation uncertainty: ADJUSTMENT QUANTITIES IN THE SPOT MARKETM DUE TO FORWARD
Facility at node 2 goes down.

state node node node node node node
TABLE IIl 1 > 3 4 5 6
SPOT GENERATION QUANTITIES DUE TO FORWARD 1 0.039 0.097 -.020 0.052 -.083 -.085
2 0.015 | 0.325 | -060 | 0.108 | -.188 | -.201
3 0.006 | 0.315 | -.057 | 0.100 | -.176 | -.189
state node node node node node node 4 -.030 0.279 -.099 0.145 -.141 -.154
1 2 3 4 5 6 5 -030 | 0.279 | -.099 | 0.145 | -141 | -.154
1 0.245 | 0.187 | 0.304 | 0.196 | 0.331 | 0.333 6 “041 | 0268 | -110 | 0.350 | -.227 | -.240
2 0.436 | 0.126 | 0510 | 0.286 | 0.582 | 0.595 7 -038 | 0396 | -096 | 0.117 | -.188 | -.191
3 0.394 | 0.085 | 0.457 | 0.250 | 0.526 | 0.539
4 0.435 | 0.126 | 0504 | 0.247 | 0.534 | 0.546
5 0.435 | 0.126 | 0504 | 0.247 | 0.534 | 0.546
6 0.441 | 0.131 | 0.510 0 0.576 | 0.589 TABLE VI
7 0.439 0 0.503 0.262 0.557 0.565 SPOT GENERATION QUANTITIES WITHOUT FORWARD
state node node node node node node
. " , ) 1 2 3 4 5 6
are more likely to be congested. The capacities of line 2-4 and 1 0206 | 0206 | 0263 | 0.180 | 0280 | 0.280
line 3-5 is set to be).15. 2 0.226 | 0.226 | 0.289 | 0.198 | 0.308 | 0.308
; ; PR 3 0.185 | 0.185 | 0.237 | 0.162 | 0.252 | 0.252
=Y
The uncerta_unty of_ the s_pot market is classified into sev 7 S 5306 0oE T 5. — 58— 5580
states qf contingencies. Six out of seven states are of unger—g 0206 1 0206 1 0263 | 0180 | 0280 | 0280
tainty with small independent probabilities, two are of demand 6 0.223 | 0.223 | 0.280 0 0.295 | 0.295
uncertainty, two are of network uncertainty and the rest twa_’ 0.226 0 0283 [ 0198 | 0.298 | 0.298
are of generation uncertainty (see table 1). Table Il lists the
nodal information in the normal state. TABLE VI
We test these two algorithms from a set of different S
. . . . . POT PRICES WITHOUT FORWARD
starting points. We also test these algorithms in different
firms’ orders: in some cases, we solve firm 1's forward
commitment followed by solving firm 2’s commitment; in| State ”Ofe ”°2de ”O:fe ”Ofe ”Oge ”Oge
qther_cases, we first find flr_m 2’s_forward commitment, th_ f—1 2800 1 4800 | 2800 | 4800 | 48.00 | 48.00
find firm 1's. All of these trials give us the same result, in~ 2 4800 | 48.00 | 4800 | 4800 | 48.00 | 48.00
which the forward commitments afe; 1,212, 2,1, 222) = i 32-88 32-88 jg-gg 32-88 ig-gg 32-88
(1.1968,0.7494,0.2294, 1.3306). _ _ 5 4800 | 48.00 | 48.00 | 48.00 | 48.00 | 48.00
Table Il through table VI lists the corresponding spgt—s 4952 | 4950 | 4952 | 4952 | 4952 | 4952
generation quantities, spot prices and adjustment quantities. 7 49.76 | 49.76 | 49.76 | 49.76 | 49.76 | 49.76

Compared to the result of single-settlement market, we find




that in the two-settlement market [5] J. Cardell, C. Hitt and W. W. Hogan , “Market Power and Strategic

. . . . Interaction in Electricity NetworksResource and Energy Economiesl.
« Lines not congested in the single-settlement market might, o op. 109-137, 1997

be congested in the spot market of the two-settlemest H.-P. Chao and S. C. Peck, “A market mechanism for electric power
market. State 4, 5 and 7 in the single-settlement markettransmission”Journal of Regulatory Economicsol 10, no. 1, pp. 25-60,

: : 996
have no congested lines, therefore the nodal prices fLR. W. Cottle, J.S. Pang and R. E. Stortke Linear Complementarity

equal; however in the spot market of the two-settlement problem Academic Press, Boston, MA, 1992
market, the nodal prices are different due to congestiorig. S. P. Dirkse and M. C. Ferris, “the PATH Solver: a Non-monotone

; it oI itiaa i Stabilization Scheme for Mixed Complementarity Problen@yitimization
« Not all generation facilities will increase quantities in the Methods and Softwapeol. 5. pp. 123-156, 1995

spot market of the two-settlement market. The generatigff N.-H. M. von der Fehr and D. Harbord, Long-term Contracts and
facility at node 2 is such an example. Imperfectly Competitive Spot Markets: A Study of UK Eletricity Industry,

« Consumer surplus increases from 15.4243 in the single-'\s/'vflgndoggncl‘ggnzno- 14, Department of Economics, Univeristy of Oslo, Oslo,
settlement market to 24.0342 in the two-settlement m":t!lr.'O] D. Fudenberg and J. Tirol&ame Theorythe MIT Press, Cambridge,

ket. Producer surplus decreases from 32.4116 to 30.3323MmA, 1991

Social welfare increases from 47.8359 to 54.3665. [11] R. J. Green, “the Electricity Contract Market in England and Wales”,
Jounal of Industrial Economi¢sol. 47, no. 1, pp.107-124, 1999

[12] B.F. Hobbs, C. B. Metzler, and J.S. Pang, “Strategic Gaming Analysis
VI. CONCLUSION REMARKS for Electric Power Systems: An MPEC ApproachEEE Transactions on
. Power Systemssol 15, no. 2, 638-645, 2000
In this paper, we model the two-settlement system as a twes] B.F. Hobbs, “Linear Complementarity Models of Nash-Cournot Com-

period game with multiple states of the world in the second petition in Bilateral and POOLCO Power Market$£EE Transactions on

; : - ower Systemssol. 16, no. 2, pp. 194-202, 2001
perlod. Because we assume, linear demand functions R. Kamat , and S. S. Oren , “Multi-Settlement Systems for Electric-

constant marginal generation cost the spot market equilibriumity Markets: Zonal Aggregation under Network Uncertainty and Market
can be computed as a linear complementarity problem_ |nPower”, Proceeding of the 35th Hawaii International Conference on

; ; " S Systems Sciences (HICCS .3B)g Island, Hawaii, January 7-11, 2002
period 1, firms solve an expected utility maximization proble 5] Z.0. Luo . J.5. Pang and D. RalpMathematical Programs with

subject to the equality between the forward price and the Equilibrium Constraints Cambridge University press, Cambridge, 1996
expected weighted spot prices, and the linear complementafit§] D. M. Newbery, “Competition, Contracts, and Entry in the Electricity

problem defining the spot market equilibria in period two. fgg; Market”, Rand Journal of Economics/ol. 29, no. 4, pp. 726-749,

_This prObIem is non-convex an_d generally hard to So_lve- \_/YPI] S. S. Oren, “Economic Inefficiency of Passive Transmission Rights in
introduce two approaches: An iterative PIPA and an iterative Congested Electricity Systems with Competitive Generatiting, Energy

RSM. For the example we tested, both approaches generatéeumal vol. 18, pp. 63-83, 1997
h lt. We also observe from the example abé)ll,?]]E A. Powell, “Trading Forward in an Imperfect Market: the Case of
the same result. p lectricity in Britain”, the Economic Journalvol. 103, pp. 444-453, 1993

the likelihood of congestion, generation quantities and socjad] Y. Smeers and J.-Y. Wei, “Spatial Oligopolistic Electricity Models with
welfare changes due to forward contracts. Our next task is toCournot Firms and Opportunity Cost Transmission Prices”, Center for

P - : Operations Research and Econometrics, Universite Catholique de Louvain,
generalize the cost functions to quadratic curves and perforrr]_é)u\hain_la_newve Belgium, 1997 q

extensive sensitivity runs on the various parameters. [20] J.-Y. Wei and Y. Smeers, “Spatial Oligopolistic Electricity Models with
Our current tests show that the iterative RSM approach isCournot Firms and Regulated Transmission Pric€gerations Research
. . gol. 47, no. 1, pp. 102-112, 1999
faster than the iterative PIPA approach. Both approaches ar
sensitive to the number of nodes. However, the iterative PIPA
approach is more sensitive to the number of state contingencjcla

S . .
while the iterative RSM approach is more sensitive the numbt%%n U\;\a;\?elrzi ta Z?'léél?;gﬁﬁ;t;? él?kg;parmeua? :Egelzr:rt]
of zones and the step size. y y.

. I . ssistant on project EECOMS (Extended Enterprise coalition
Finally, as indicated earlier, we also plan to relax the ng-"". . .
y P ior integrated COllaborative Manufacturing Systems) funded

arbitrage assumption between the forward and spot mar etNIST ATP (Advance Technology Program), and software

replacing it with a market clearing condition that sets the’ . . ;
forward price based on expected demand functions in the s ggineer for Advanced Planning & Scheduling products at

market. We expect that such a condition enhances genera [gcle Corporation. He has received his M.S. in Computer

market power and will enable generators to raise forwa rlence from the Univeristy of North Carolina at Charlotte,

prices above the expected spot prices while increasing tha'|nrOI M.S. and B.S in Mechanical Engineering from Shanghai
profits. 1ao Tong University.
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